login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A081415
Triply balanced primes: primes which are averages of both their immediate neighbor, their second neighbors and their third neighbors.
9
683783, 1056317, 1100261, 2241709, 2815301, 4746359, 10009049, 12003209, 13810981, 14907649, 15403009, 15730067, 16595081, 17518201, 19755301, 20378327, 21006487, 21574453, 21579983, 22237121, 22625179, 25876901, 26018791, 26354201, 27188141, 28469461
OFFSET
1,1
COMMENTS
Equivalently, primes which are balanced primes of orders 1, 2, and 3. - Muniru A Asiru, Apr 08 2018
Numbers m such that A346399(m) is odd and >= 7. - Ya-Ping Lu, May 11 2024
LINKS
EXAMPLE
p = 683383: 683747 + ... + p + ... + 683819 = 7p; 683759 + ... + p + ... + 683807 = 5p; 683777 + p + 683789 = 3p.
MATHEMATICA
a = {}; Do[p = 2Prime[n]; If[p == Prime[n - 1] + Prime[n + 1], If[p == Prime[n - 2] + Prime[n + 2], If[p == Prime[n - 3] + Prime[n + 3], {n, 5, 1100000}] (* Robert G. Wilson v, Jun 28 2004 *)
Transpose[Select[Partition[Prime[Range[1620000]], 7, 1], (#[[1]]+#[[7]])/2 == (#[[2]]+#[[6]])/2==(#[[3]]+#[[5]])/2==#[[4]]&]][[4]] (* Harvey P. Dale, Sep 13 2013 *)
PROG
(GAP) P:=Filtered([1, 3..3*10^7+1], IsPrime);;
a:=Intersection(List([1, 2, 3], b->List(Filtered(List([0..Length(P)-(2*b+1)], k->List([1..2*b+1], j->P[j+k])), i->Sum(i)/(2*b+1)=i[b+1]), m->m[b+1]))); # Muniru A Asiru, Apr 08 2018
(Python)
from sympy import nextprime; p, q, r, s, t, u, v = 2, 3, 5, 7, 11, 13, 17
while v < 29000000:
if p + v == q + u == r + t == 2*s: print(s, end = ', ')
p, q, r, s, t, u, v = q, r, s, t, u, v, nextprime(v) # Ya-Ping Lu, May 11 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Labos Elemer, Apr 02 2003
STATUS
approved