login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A006562 Balanced primes (of order one): primes which are the average of the previous prime and the following prime.
(Formerly M4011)
144
5, 53, 157, 173, 211, 257, 263, 373, 563, 593, 607, 653, 733, 947, 977, 1103, 1123, 1187, 1223, 1367, 1511, 1747, 1753, 1907, 2287, 2417, 2677, 2903, 2963, 3307, 3313, 3637, 3733, 4013, 4409, 4457, 4597, 4657, 4691, 4993, 5107, 5113, 5303, 5387, 5393 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
Subsequence of A075540. - Franklin T. Adams-Watters, Jan 11 2006
This subsequence of A125830 and of A162174 gives primes of level (1,1): More generally, the i-th prime p(i) is of level (1,k) if and only if it has level 1 in A117563 and 2 p(i) - p(i+1) = p(i-k). - Rémi Eismann, Feb 15 2007
Note the similarity between plots of A006562 and A013916. - Bill McEachen, Sep 07 2009
Balanced primes U strong primes = good primes. Or, A006562 U A051634 = A046869. - Juri-Stepan Gerasimov, Mar 01 2010
Primes prime(n) such that A001223(n-1) = A001223(n). - Irina Gerasimova, Jul 11 2013
Numbers m such that A346399(m) is odd and >= 3. - Ya-Ping Lu, Dec 26 2021 and May 07 2024
REFERENCES
A. Murthy, Smarandache Notions Journal, Vol. 11 N. 1-2-3 Spring 2000.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
David Wells, The Penguin Dictionary of Curious and Interesting Numbers (Rev. ed. 1997), p. 134.
LINKS
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972, p. 870.
Ernest G. Hibbs, Component Interactions of the Prime Numbers, Ph. D. Thesis, Capitol Technology Univ. (2022), see p. 33.
Shubhankar Paul, Ten Problems of Number Theory, International Journal of Engineering and Technical Research (IJETR), ISSN: 2321-0869, Volume-1, Issue-9, November 2013.
Shubhankar Paul, Legendre, Grimm, Balanced Prime, Prime triple, Polignac's conjecture, a problem and 17 tips with proof to solve problems on number theory, International Journal of Engineering and Technical Research (IJETR), ISSN: 2321-0869, Volume-1, Issue-10, December 2013.
FORMULA
2*p_n = p_(n-1) + p_(n+1).
Equals { p = prime(k) | A118534(k) = prime(k-1) }. - Rémi Eismann, Nov 30 2009
a(n) = A000040(A064113(n) + 1) = (A122535(n) + A181424(n)) / 2. - Reinhard Zumkeller, Jan 20 2012
a(n) = A122535(n) + A117217(n). - Zak Seidov, Feb 14 2013
Equals A145025 intersect A000040 = A145025 \ A024675. - M. F. Hasler, Jun 01 2013
Conjecture: Limit_{n->oo} n*(log(a(n)))^2 / a(n) = 1/2. - Alain Rocchelli, Mar 21 2024
Conjecture: The asymptotic limit of the average of a(n+1)-a(n) is equivalent to 2*(log(a(n)))^2. Otherwise formulated: 2 * Sum_{n=1..N} (log(a(n)))^2 ~ a(N). - Alain Rocchelli, Mar 23 2024
EXAMPLE
5 belongs to the sequence because 5 = (3 + 7)/2. Likewise 53 = (47 + 59)/2.
5 belongs to the sequence because it is a term, but not first or last, of the AP of consecutive primes (3, 5, 7).
53 belongs to the sequence because it is a term, but not first or last, of the AP of consecutive primes (47, 53, 59).
257 and 263 belong to the sequence because they are terms, but not first or last, of the AP of consecutive primes (251, 257, 263, 269).
MATHEMATICA
Transpose[ Select[ Partition[ Prime[ Range[1000]], 3, 1], #[[2]] ==(#[[1]] + #[[3]])/2 &]][[2]]
p=Prime[Range[1000]]; p[[Flatten[1+Position[Differences[p, 2], 0]]]]
Prime[#]&/@SequencePosition[Differences[Prime[Range[800]]], {x_, x_}][[All, 2]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jan 31 2019 *)
PROG
(PARI) betwixtpr(n) = { local(c1, c2, x, y); for(x=2, n, c1=c2=0; for(y=prime(x-1)+1, prime(x)-1, if(!isprime(y), c1++); ); for(y=prime(x)+1, prime(x+1)-1, if(!isprime(y), c2++); ); if(c1==c2, print1(prime(x)", ")) ) } \\ Cino Hilliard, Jan 25 2005
(PARI) forprime(n=1, 999, n-precprime(n-1)==nextprime(n+1)-n&print1(n", ")) \\ M. F. Hasler, Jun 01 2013
(PARI) is(n)=n-precprime(n-1)==nextprime(n+1)-n && isprime(n) \\ Charles R Greathouse IV, Apr 07 2016
(Haskell)
a006562 n = a006562_list !! (n-1)
a006562_list = filter ((== 1) . a010051) a075540_list
-- Reinhard Zumkeller, Jan 20 2012
(Haskell)
a006562 n = a006562_list !! (n-1)
a006562_list = h a000040_list where
h (p:qs@(q:r:ps)) = if 2 * q == (p + r) then q : h qs else h qs
-- Reinhard Zumkeller, May 09 2013
(Magma) [a: n in [1..1000] | IsPrime(a) where a is NthPrime(n)-NthPrime(n+1)+NthPrime(n+2)]; // Vincenzo Librandi, Jun 23 2016
(Python)
from sympy import nextprime; p, q, r = 2, 3, 5
while q < 6000:
if 2*q == p + r: print(q, end = ", ")
p, q, r = q, r, nextprime(r) # Ya-Ping Lu, Dec 23 2021
CROSSREFS
Cf. A225494 (multiplicative closure); complement of A178943 with respect to A000040.
Cf. A055380, A051795, A081415, A096710 for other balanced prime sequences.
Sequence in context: A106097 A163580 A075540 * A094847 A001992 A139899
KEYWORD
nonn,easy,nice
AUTHOR
EXTENSIONS
Reworded comment and added formula from R. Eismann. - M. F. Hasler, Nov 30 2009
Edited by Daniel Forgues, Jan 15 2011
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 13 19:49 EDT 2024. Contains 375910 sequences. (Running on oeis4.)