OFFSET
1,1
COMMENTS
Subsequence of A075540. - Franklin T. Adams-Watters, Jan 11 2006
This subsequence of A125830 and of A162174 gives primes of level (1,1): More generally, the i-th prime p(i) is of level (1,k) if and only if it has level 1 in A117563 and 2 p(i) - p(i+1) = p(i-k). - Rémi Eismann, Feb 15 2007
Balanced primes U strong primes = good primes. Or, A006562 U A051634 = A046869. - Juri-Stepan Gerasimov, Mar 01 2010
Numbers m such that A346399(m) is odd and >= 3. - Ya-Ping Lu, Dec 26 2021 and May 07 2024
"Balanced" means that the next and preceding gap are of the same size, i.e., the second difference A036263 vanishes; so these are the primes whose indices are 1 more than indices of zeros in A036263, listed in A064113. - M. F. Hasler, Oct 15 2024
REFERENCES
A. Murthy, Smarandache Notions Journal, Vol. 11 N. 1-2-3 Spring 2000.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
David Wells, The Penguin Dictionary of Curious and Interesting Numbers (Rev. ed. 1997), p. 134.
LINKS
T. D. Noe, Table of n, a(n) for n = 1..10000
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972, p. 870.
Ernest G. Hibbs, Component Interactions of the Prime Numbers, Ph. D. Thesis, Capitol Technology Univ. (2022), see p. 33.
Shubhankar Paul, Ten Problems of Number Theory, International Journal of Engineering and Technical Research (IJETR), ISSN: 2321-0869, Volume-1, Issue-9, November 2013.
Shubhankar Paul, Legendre, Grimm, Balanced Prime, Prime triple, Polignac's conjecture, a problem and 17 tips with proof to solve problems on number theory, International Journal of Engineering and Technical Research (IJETR), ISSN: 2321-0869, Volume-1, Issue-10, December 2013.
FORMULA
2*p_n = p_(n-1) + p_(n+1).
Equals { p = prime(k) | A118534(k) = prime(k-1) }. - Rémi Eismann, Nov 30 2009
Conjecture: Limit_{n->oo} n*(log(a(n)))^2 / a(n) = 1/2. - Alain Rocchelli, Mar 21 2024
Conjecture: The asymptotic limit of the average of a(n+1)-a(n) is equivalent to 2*(log(a(n)))^2. Otherwise formulated: 2 * Sum_{n=1..N} (log(a(n)))^2 ~ a(N). - Alain Rocchelli, Mar 23 2024
EXAMPLE
5 belongs to the sequence because 5 = (3 + 7)/2. Likewise 53 = (47 + 59)/2.
5 belongs to the sequence because it is a term, but not first or last, of the AP of consecutive primes (3, 5, 7).
53 belongs to the sequence because it is a term, but not first or last, of the AP of consecutive primes (47, 53, 59).
257 and 263 belong to the sequence because they are terms, but not first or last, of the AP of consecutive primes (251, 257, 263, 269).
MATHEMATICA
Transpose[ Select[ Partition[ Prime[ Range[1000]], 3, 1], #[[2]] ==(#[[1]] + #[[3]])/2 &]][[2]]
p=Prime[Range[1000]]; p[[Flatten[1+Position[Differences[p, 2], 0]]]]
Prime[#]&/@SequencePosition[Differences[Prime[Range[800]]], {x_, x_}][[All, 2]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jan 31 2019 *)
PROG
(PARI) betwixtpr(n) = { local(c1, c2, x, y); for(x=2, n, c1=c2=0; for(y=prime(x-1)+1, prime(x)-1, if(!isprime(y), c1++); ); for(y=prime(x)+1, prime(x+1)-1, if(!isprime(y), c2++); ); if(c1==c2, print1(prime(x)", ")) ) } \\ Cino Hilliard, Jan 25 2005
(PARI) forprime(p=1, 999, p-precprime(n-1)==nextprime(p+1)-p && print1(p", ")) \\ M. F. Hasler, Jun 01 2013
(PARI) is(n)=n-precprime(n-1)==nextprime(n+1)-n && isprime(n) \\ Charles R Greathouse IV, Apr 07 2016
(Haskell)
a006562 n = a006562_list !! (n-1)
a006562_list = filter ((== 1) . a010051) a075540_list
-- Reinhard Zumkeller, Jan 20 2012
(Haskell)
a006562 n = a006562_list !! (n-1)
a006562_list = h a000040_list where
h (p:qs@(q:r:ps)) = if 2 * q == (p + r) then q : h qs else h qs
-- Reinhard Zumkeller, May 09 2013
(Magma) [a: n in [1..1000] | IsPrime(a) where a is NthPrime(n)-NthPrime(n+1)+NthPrime(n+2)]; // Vincenzo Librandi, Jun 23 2016
(Python)
from sympy import nextprime; p, q, r = 2, 3, 5
while q < 6000:
if 2*q == p + r: print(q, end = ", ")
p, q, r = q, r, nextprime(r) # Ya-Ping Lu, Dec 23 2021
CROSSREFS
Primes A000040 whose indices are 1 more than A064113, indices of zeros in A036263 (second differences of the primes).
KEYWORD
nonn,easy,nice
AUTHOR
EXTENSIONS
Reworded comment and added formula from R. Eismann. - M. F. Hasler, Nov 30 2009
Edited by Daniel Forgues, Jan 15 2011
STATUS
approved