OFFSET
1,1
COMMENTS
All terms are congruent to 5 mod 24. - Jianing Song, Feb 17 2019
Also a(n) is the least prime r congruent to 5 mod 8 such that the first n odd primes are quadratic nonresidues modulo r. Note that r == 5 (mod 8) implies 2 is a quadratic nonresidue modulo r. See A001986 for the case where r == 3 (mod 8). - Jianing Song, Feb 19 2019
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Michael John Jacobson, Jr., Computational Techniques in Quadratic Fields, Master's thesis, University of Manitoba, Winnipeg, Manitoba, 1995.
Michael John Jacobson Jr. and Hugh C. Williams, New quadratic polynomials with high densities of prime values, Math. Comp. 72 (2003), 499-519.
D. H. Lehmer, E. Lehmer and D. Shanks, Integer sequences having prescribed quadratic character, Math. Comp., 24 (1970), 433-451. [There is an error in the table given in this paper.]
D. H. Lehmer, E. Lehmer and D. Shanks, Integer sequences having prescribed quadratic character, Math. Comp., 24 (1970), 433-451 [Annotated scanned copy]
PROG
(PARI) isok(p, oddpn) = {forprime(q=3, oddpn, if (kronecker(p, q) != -1, return (0)); ); return (1); }
a(n) = {my(oddpn = prime(n+1)); forprime(p=3, , if ((p%8) == 5, if (isok(p, oddpn), return (p)); ); ); } \\ Michel Marcus, Oct 17 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
Corrected and extended by N. J. A. Sloane, Jun 14 2004
STATUS
approved