OFFSET
1,1
COMMENTS
With an initial a(0) = 5, a(n) is the least fundamental discriminant D > 1 such that the first n + 1 primes are inert in the real quadratic field with discriminant D. See A094841 for the imaginary quadratic field case. - Jianing Song, Feb 15 2019
All terms are congruent to 5 mod 24. - Jianing Song, Feb 17 2019
LINKS
Michael John Jacobson, Jr., Computational Techniques in Quadratic Fields, Master's thesis, University of Manitoba, Winnipeg, Manitoba, 1995.
Michael John Jacobson Jr. and Hugh C. Williams, New quadratic polynomials with high densities of prime values, Math. Comp. 72 (2003), 499-519.
D. H. Lehmer, E. Lehmer and D. Shanks, Integer sequences having prescribed quadratic character, Math. Comp., 24 (1970), 433-451.
PROG
(PARI) isok(m, oddpn) = {forprime(q=3, oddpn, if (kronecker(m, q) != -1, return (0)); ); return (1); }
a(n) = {oddpn = prime(n+1); m = 5; while(! isok(m, oddpn), m += 8); m; } \\ Michel Marcus, Oct 17 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jun 14 2004
STATUS
approved