OFFSET
0,3
REFERENCES
G. E. Andrews, MacMahon's Partition Analysis II: Fundamental Theorems, Annals Combinatorics, 4 (2000), 327-338.
A. Cayley, Calculation of the minimum N.G.F. of the binary seventhic, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 10, p. 408-419.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..1000
A. Cayley, Calculation of the minimum N.G.F. of the binary seventhic, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 10, p. 408-419. [Annotated scanned copy]
L. Colmenarejo, Combinatorics on several families of Kronecker coefficients related to plane partitions, arXiv:1604.00803 [math.CO], 2016. See Table 1 p. 5.
Index entries for linear recurrences with constant coefficients, signature (1, 2, 0, -2, -4, 1, 3, 3, 1, -4, -2, 0, 2, 1, -1).
FORMULA
G.f.: 1/((1-x)*(1-x^2)^2*(1-x^3)^2*(1-x^4)).
MAPLE
a:= n-> (Matrix(15, (i, j)-> if (i=j-1) then 1 elif j=1 then [1, 2, 0, -2, -4, 1, 3, 3, 1, -4, -2, 0, 2, 1, -1][i] else 0 fi)^n)[1, 1]: seq(a(n), n=0..50); # Alois P. Heinz, Jul 31 2008
MATHEMATICA
a[n_] := (Table[Which[i == j-1, 1, j == 1, {1, 2, 0, -2, -4, 1, 3, 3, 1, -4, -2, 0, 2, 1, -1}[[i]], True, 0], {i, 1, 15}, {j, 1, 15}] // MatrixPower[#, n]&)[[1, 1]]; Table[a[n], {n, 0, 46}] (* Jean-François Alcover, Mar 17 2014, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
More terms from James A. Sellers, Feb 09 2000
STATUS
approved