login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A284829
Expansion of Sum_{i>=1} mu(i)^2*x^i/(1 - x^i) * Product_{j>=i} 1/(1 - mu(j)^2*x^j), where mu() is the Moebius function (A008683).
1
1, 3, 5, 9, 13, 23, 30, 45, 64, 89, 118, 165, 211, 282, 369, 475, 606, 779, 978, 1236, 1547, 1922, 2375, 2936, 3602, 4403, 5362, 6506, 7864, 9493, 11399, 13661, 16317, 19443, 23122, 27415, 32418, 38268, 45065, 52968, 62125, 72742, 84969, 99112, 115409, 134139, 155665, 180368, 208658, 241051
OFFSET
1,2
COMMENTS
Total number of smallest parts in all partitions of n into squarefree parts (A005117).
FORMULA
G.f.: Sum_{i>=1} mu(i)^2*x^i/(1 - x^i) * Product_{j>=i} 1/(1 - mu(j)^2*x^j).
EXAMPLE
a(5) = 13 because we have [5], [3, 2], [3, 1, 1], [2, 2, 1], [2, 1, 1, 1], [1, 1, 1, 1, 1] and 1 + 1 + 2 + 1 + 3 + 5 = 13.
MATHEMATICA
nmax = 50; Rest[CoefficientList[Series[Sum[MoebiusMu[i]^2 x^i/(1 - x^i) Product[1/(1 - MoebiusMu[j]^2 x^j), {j, i, nmax}], {i, 1, nmax}], {x, 0, nmax}], x]]
PROG
(PARI) x='x+O('x^50); Vec(sum(i=1, 50, moebius(i)^2*x^i/(1 - x^i) * prod(j=i, 50, 1/(1 - moebius(j)^2*x^j)))) \\ Indranil Ghosh, Apr 04 2017
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Apr 03 2017
STATUS
approved