OFFSET
1,2
COMMENTS
Total number of smallest parts in all partitions of n into squares (A000290).
FORMULA
G.f.: Sum_{i>=1} x^(i^2)/(1 - x^(i^2)) * Product_{j>=i} 1/(1 - x^(j^2)).
EXAMPLE
a(9) = 16 because we have [9], [4, 4, 1], [4, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1] and 1 + 1 + 5 + 9 = 16.
MATHEMATICA
nmax = 60; Rest[CoefficientList[Series[Sum[x^i^2/(1 - x^i^2) Product[1/(1 - x^j^2), {j, i, nmax}], {i, 1, nmax}], {x, 0, nmax}], x]]
PROG
(PARI) x='x+O('x^61); Vec(sum(i=1, 60, x^i^2/(1 - x^i^2) * prod(j=i, 60, 1/(1 - x^j^2)))) \\ Indranil Ghosh, Apr 04 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Apr 03 2017
STATUS
approved