OFFSET
1,4
COMMENTS
Total number of largest parts in all partitions of n into prime parts.
FORMULA
G.f.: Sum_{i>=1} x^prime(i)/(1 - x^prime(i)) * Product_{j=1..i} 1/(1 - x^prime(j)).
EXAMPLE
a(10) = 11 because we have [7, 3], [5, 5], [5, 3, 2], [3, 3, 2, 2], [2, 2, 2, 2, 2] and 1 + 2 + 1 + 2 + 5 = 11.
MATHEMATICA
nmax = 65; Rest[CoefficientList[Series[Sum[x^Prime[i]/(1 - x^Prime[i]) Product[1/(1 - x^Prime[j]), {j, 1, i}], {i, 1, nmax}], {x, 0, nmax}], x]]
PROG
(PARI) x='x+O('x^66); concat([0], Vec(sum(i=1, 66, x^prime(i)/(1 - x^prime(i)) * prod(j=1, i, 1/(1 - x^prime(j)))))) \\ Indranil Ghosh, Apr 04 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Apr 03 2017
STATUS
approved