login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A281544
Expansion of Sum_{k>=2} x^prime(k)/(1 - x^prime(k)) / Product_{k>=2} (1 - x^prime(k)).
2
0, 0, 1, 0, 1, 2, 1, 2, 3, 4, 4, 6, 7, 8, 11, 12, 15, 18, 20, 26, 29, 34, 40, 46, 54, 62, 71, 82, 94, 106, 122, 138, 157, 178, 201, 226, 254, 286, 321, 360, 402, 448, 501, 558, 619, 690, 764, 846, 938, 1036, 1145, 1264, 1392, 1532, 1687, 1854, 2036, 2234, 2448, 2680, 2934, 3210, 3507, 3828, 4178, 4554, 4961, 5404
OFFSET
1,6
COMMENTS
Total number of parts in all partitions of n into odd primes.
Convolution of A005087 and A099773.
FORMULA
G.f.: Sum_{k>=2} x^prime(k)/(1 - x^prime(k)) / Product_{k>=2} (1 - x^prime(k)).
EXAMPLE
a(14) = 8 because we have [11, 3], [7, 7], [5, 3, 3, 3] and 2 + 2 + 4 = 8.
MATHEMATICA
nmax = 68; Rest[CoefficientList[Series[Sum[x^Prime[k]/(1 - x^Prime[k]), {k, 2, nmax}]/Product[1 - x^Prime[k], {k, 2, nmax}], {x, 0, nmax}], x]]
PROG
(PARI)
sumparts(n, pred)={sum(k=1, n, 1/(1-pred(k)*x^k) - 1 + O(x*x^n))/prod(k=1, n, 1-pred(k)*x^k + O(x*x^n))}
{my(n=60); Vec(sumparts(n, v->v>2 && isprime(v)), -n)} \\ Andrew Howroyd, Dec 28 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jan 23 2017
STATUS
approved