login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A238219
The total number of 4's in all partitions of n into an even number of distinct parts.
2
0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 2, 1, 2, 3, 4, 4, 5, 6, 8, 9, 11, 13, 16, 18, 21, 25, 29, 34, 40, 46, 53, 62, 71, 82, 94, 108, 124, 142, 161, 185, 210, 238, 270, 307, 347, 392, 442, 499, 562, 632, 709, 797, 894, 1000, 1119, 1252, 1398, 1560, 1739, 1937, 2157
OFFSET
0,11
COMMENTS
The g.f. for "number of k's" is (1/2)*(x^k/(1+x^k))*(Product_{n>=1} 1 + x^n) - (1/2)*(x^k/(1-x^k))*(Product_{n>=1} 1 - x^n).
LINKS
FORMULA
a(n) = Sum_{j=1..round(n/8)} A067659(n-(2*j-1)*4) - Sum_{j=1..floor(n/8)} A067661(n-8*j).
G.f.: (1/2)*(x^4/(1+x^4))*(Product_{n>=1} 1 + x^n) - (1/2)*(x^4/(1-x^4))*(Product_{n>=1} 1 - x^n).
EXAMPLE
a(13) = 3 because the partitions in question are: 9+4, 6+4+2+1, 5+4+3+1.
CROSSREFS
Column k=4 of A238451.
Sequence in context: A030383 A031231 A030562 * A026833 A281544 A056882
KEYWORD
nonn
AUTHOR
Mircea Merca, Feb 20 2014
EXTENSIONS
Terms a(51) and beyond from Andrew Howroyd, Apr 29 2020
STATUS
approved