OFFSET
0,7
COMMENTS
Also number of partitions of n such that if k is the largest part, then k occurs an even number of times and each of the numbers 1,2,...,k-1 occurs at least once. Example: a(10)=4 because we have [3,3,2,1,1], [2,2,2,2,1,1], [2,2,1,1,1,1,1,1] and [1,1,1,1,1,1,1,1,1,1]. - Emeric Deutsch, Mar 30 2006
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..10000
FORMULA
G.f.: Sum_{k>=2} ((-1)^k*(-1+Product_{i>=k} (1+x^i))). - Vladeta Jovovic, Aug 26 2003
G.f.: Sum_{k>=1} x^(2k)*Product_{j>=2k+1} (1+x^j).
G.f.: Sum_{k>=1} x^(k*(k+3)/2)/((1+x^k)*Product_{j=1..k} (1-x^j)). - Emeric Deutsch, Mar 30 2006
a(n) ~ exp(Pi*sqrt(n/3)) / (4 * 3^(5/4) * n^(3/4)). - Vaclav Kotesovec, Jun 09 2019
EXAMPLE
a(10)=4 because we have [10], [8,2], [6,4] and [5,3,2].
MAPLE
g:=sum(x^(2*k)*product(1+x^j, j=2*k+1..60), k=1..60): gser:=series(g, x=0, 58): seq(coeff(gser, x, n), n=0..55); # Emeric Deutsch, Mar 30 2006
# second Maple program:
b:= proc(n, i) option remember; `if`(i*(i+1)/2-1<n, 0, b(n, i-1)+
`if`(i=n and i::even, 1, 0)+`if`(i<n, b(n-i, min(n-i, i-1)), 0))
end:
a:= n-> b(n$2):
seq(a(n), n=0..60); # Alois P. Heinz, Feb 01 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
a(0)=0 prepended by Alois P. Heinz, Feb 01 2019
STATUS
approved