login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A026833
Number of partitions of n into distinct parts, the least being even.
2
0, 0, 1, 0, 1, 1, 2, 1, 2, 3, 4, 4, 5, 6, 8, 9, 11, 14, 16, 18, 22, 26, 31, 36, 42, 49, 57, 66, 76, 88, 102, 116, 134, 154, 176, 201, 229, 260, 296, 336, 381, 432, 488, 550, 622, 700, 788, 886, 994, 1115, 1250, 1399, 1564, 1748, 1952, 2176, 2426, 2701, 3004
OFFSET
0,7
COMMENTS
Also number of partitions of n such that if k is the largest part, then k occurs an even number of times and each of the numbers 1,2,...,k-1 occurs at least once. Example: a(10)=4 because we have [3,3,2,1,1], [2,2,2,2,1,1], [2,2,1,1,1,1,1,1] and [1,1,1,1,1,1,1,1,1,1]. - Emeric Deutsch, Mar 30 2006
LINKS
FORMULA
G.f.: Sum_{k>=2} ((-1)^k*(-1+Product_{i>=k} (1+x^i))). - Vladeta Jovovic, Aug 26 2003
G.f.: Sum_{k>=1} x^(2k)*Product_{j>=2k+1} (1+x^j).
G.f.: Sum_{k>=1} x^(k*(k+3)/2)/((1+x^k)*Product_{j=1..k} (1-x^j)). - Emeric Deutsch, Mar 30 2006
a(n) ~ exp(Pi*sqrt(n/3)) / (4 * 3^(5/4) * n^(3/4)). - Vaclav Kotesovec, Jun 09 2019
EXAMPLE
a(10)=4 because we have [10], [8,2], [6,4] and [5,3,2].
MAPLE
g:=sum(x^(2*k)*product(1+x^j, j=2*k+1..60), k=1..60): gser:=series(g, x=0, 58): seq(coeff(gser, x, n), n=0..55); # Emeric Deutsch, Mar 30 2006
# second Maple program:
b:= proc(n, i) option remember; `if`(i*(i+1)/2-1<n, 0, b(n, i-1)+
`if`(i=n and i::even, 1, 0)+`if`(i<n, b(n-i, min(n-i, i-1)), 0))
end:
a:= n-> b(n$2):
seq(a(n), n=0..60); # Alois P. Heinz, Feb 01 2019
CROSSREFS
Cf. A026832.
Sequence in context: A031231 A030562 A238219 * A281544 A056882 A035534
KEYWORD
nonn
EXTENSIONS
a(0)=0 prepended by Alois P. Heinz, Feb 01 2019
STATUS
approved