login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A026832
Number of partitions of n into distinct parts, the least being odd.
6
0, 1, 0, 2, 1, 2, 2, 4, 4, 5, 6, 8, 10, 12, 14, 18, 21, 24, 30, 36, 42, 50, 58, 68, 80, 93, 108, 126, 146, 168, 194, 224, 256, 294, 336, 384, 439, 500, 568, 646, 732, 828, 938, 1060, 1194, 1348, 1516, 1704, 1916, 2149, 2408, 2698, 3018, 3372, 3766, 4202, 4682
OFFSET
0,4
COMMENTS
Fine's numbers L(n).
Also number of partitions of n such that if k is the largest part, then k occurs an odd number of times and each of the numbers 1,2,...,k-1 occurs at least once. Example: a(7)=4 because we have [3,2,1,1], [2,2,2,1], [2,1,1,1,1,1] and [1,1,1,1,1,1,1]. - Emeric Deutsch, Mar 29 2006
REFERENCES
N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 56, Eq. (26.28).
LINKS
FORMULA
G.f.: Sum_{k>=1} ((-1)^(k+1)*(-1+Product_{i>=k} (1+x^i))). - Vladeta Jovovic, Aug 26 2003
G.f.: Sum_{ k >= 1 } x^(k*(k+1)/2)/((1+x^k)*Product_{i=1..k} (1-x^i) ). - Vladeta Jovovic, Aug 10 2004
(1 + Sum_{n >= 1} a(n)q^n )*(1 + 2 Sum_{m>=1} (-1)^m*q^(m^2)) = Sum_{n >= 1} (-1)^n*q^((3*n^2+n)/2)/(1+q^n). [Fine]
G.f.: Sum_{k>=1} x^(2k-1)*Product_{j>=2k} (1 + x^j). - Emeric Deutsch, Mar 29 2006
a(n) ~ exp(Pi*sqrt(n/3)) / (2 * 3^(5/4) * n^(3/4)). - Vaclav Kotesovec, Jun 09 2019
EXAMPLE
a(7)=4 because we have [7], [6,1], [4,3] and [4,2,1].
MAPLE
g:=sum(x^(2*k-1)*product(1+x^j, j=2*k..60), k=1..60): gser:=series(g, x=0, 55): seq(coeff(gser, x, n), n=0..53); # Emeric Deutsch, Mar 29 2006
# second Maple program:
b:= proc(n, i) option remember; `if`(i*(i+1)/2<n, 0, b(n, i-1)+
`if`(i=n and i::odd, 1, 0)+`if`(i<n, b(n-i, min(n-i, i-1)), 0))
end:
a:= n-> `if`(n=0, 0, b(n$2)):
seq(a(n), n=0..60); # Alois P. Heinz, Feb 01 2019
MATHEMATICA
mx=53; Rest[CoefficientList[Series[Sum[x^(2*k-1) Product[1+x^j, {j, 2*k, mx}], {k, mx}], {x, 0, mx}], x]] (* Jean-François Alcover, Apr 05 2011, after Emeric Deutsch *)
Join[{0}, Table[Length[Select[IntegerPartitions[n], OddQ[#[[-1]]]&&Max[Tally[#][[All, 2]]] == 1&]], {n, 60}]] (* Harvey P. Dale, May 14 2022 *)
PROG
(Haskell)
a026832 n = p 1 n where
p _ 0 = 1
p k m = if m < k then 0 else p (k+1) (m-k) + p (k+1+0^(n-m)) m
-- Reinhard Zumkeller, Jun 14 2012
KEYWORD
nonn,nice
EXTENSIONS
More terms from Emeric Deutsch, Mar 29 2006
a(0)=0 prepended by Alois P. Heinz, Feb 01 2019
STATUS
approved