OFFSET
0,4
COMMENTS
Fine's numbers L(n).
Also number of partitions of n such that if k is the largest part, then k occurs an odd number of times and each of the numbers 1,2,...,k-1 occurs at least once. Example: a(7)=4 because we have [3,2,1,1], [2,2,2,1], [2,1,1,1,1,1] and [1,1,1,1,1,1,1]. - Emeric Deutsch, Mar 29 2006
REFERENCES
N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 56, Eq. (26.28).
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..10000
FORMULA
G.f.: Sum_{k>=1} ((-1)^(k+1)*(-1+Product_{i>=k} (1+x^i))). - Vladeta Jovovic, Aug 26 2003
G.f.: Sum_{ k >= 1 } x^(k*(k+1)/2)/((1+x^k)*Product_{i=1..k} (1-x^i) ). - Vladeta Jovovic, Aug 10 2004
(1 + Sum_{n >= 1} a(n)q^n )*(1 + 2 Sum_{m>=1} (-1)^m*q^(m^2)) = Sum_{n >= 1} (-1)^n*q^((3*n^2+n)/2)/(1+q^n). [Fine]
G.f.: Sum_{k>=1} x^(2k-1)*Product_{j>=2k} (1 + x^j). - Emeric Deutsch, Mar 29 2006
a(n) ~ exp(Pi*sqrt(n/3)) / (2 * 3^(5/4) * n^(3/4)). - Vaclav Kotesovec, Jun 09 2019
EXAMPLE
a(7)=4 because we have [7], [6,1], [4,3] and [4,2,1].
MAPLE
g:=sum(x^(2*k-1)*product(1+x^j, j=2*k..60), k=1..60): gser:=series(g, x=0, 55): seq(coeff(gser, x, n), n=0..53); # Emeric Deutsch, Mar 29 2006
# second Maple program:
b:= proc(n, i) option remember; `if`(i*(i+1)/2<n, 0, b(n, i-1)+
`if`(i=n and i::odd, 1, 0)+`if`(i<n, b(n-i, min(n-i, i-1)), 0))
end:
a:= n-> `if`(n=0, 0, b(n$2)):
seq(a(n), n=0..60); # Alois P. Heinz, Feb 01 2019
MATHEMATICA
mx=53; Rest[CoefficientList[Series[Sum[x^(2*k-1) Product[1+x^j, {j, 2*k, mx}], {k, mx}], {x, 0, mx}], x]] (* Jean-François Alcover, Apr 05 2011, after Emeric Deutsch *)
Join[{0}, Table[Length[Select[IntegerPartitions[n], OddQ[#[[-1]]]&&Max[Tally[#][[All, 2]]] == 1&]], {n, 60}]] (* Harvey P. Dale, May 14 2022 *)
PROG
(Haskell)
a026832 n = p 1 n where
p _ 0 = 1
p k m = if m < k then 0 else p (k+1) (m-k) + p (k+1+0^(n-m)) m
-- Reinhard Zumkeller, Jun 14 2012
CROSSREFS
KEYWORD
nonn,nice
AUTHOR
EXTENSIONS
More terms from Emeric Deutsch, Mar 29 2006
a(0)=0 prepended by Alois P. Heinz, Feb 01 2019
STATUS
approved