The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A097042 G.f. = (1 + 4 * g.f. for A096661)/(1 + 2 Sum_{m>=1} (-1)^m*q^(m^2)). 3
 1, 2, 0, 4, 2, 4, 4, 8, 8, 10, 12, 16, 20, 24, 28, 36, 42, 48, 60, 72, 84, 100, 116, 136, 160, 186, 216, 252, 292, 336, 388, 448, 512, 588, 672, 768, 878, 1000, 1136, 1292, 1464, 1656, 1876, 2120, 2388, 2696, 3032, 3408, 3832, 4298, 4816, 5396, 6036, 6744, 7532, 8404 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS a(0) = 1; for n>0, a(n) = 2*A026832(n) (i.e., essentially Fine's numbers L(n) multiplied by 2). The number of odd-even overpartitions of n: an odd-even overpartition of n is an overpartition of n with the smallest part odd and such that the difference between successive parts is odd if the smaller part is nonoverlined and even otherwise - see Yang 2017. - Peter Bala, Mar 29 2017 REFERENCES N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 56, Eq. (26.28). LINKS Vaclav Kotesovec, Table of n, a(n) for n = 0..1000 Min-Joo Jang, Asymptotic behavior of odd-even partitions, arXiv:1703.01837v1 [math.NT], 2017. FORMULA a(n) ~ 1/(3^(5/4)*n^(3/4))*exp(Pi*sqrt(n/3)) [Jang 2017]. - Peter Bala, Mar 29 2017 Conjectural g.f.: 1 + 2*Sum_{n >= 1} q^(n*(n+1)/2)/( (1 + q^n) * Product_{k = 1..n} 1 - q^k ). - Peter Bala, Feb 19 2021 MATHEMATICA nmax = 60; Flatten[{1, Rest[CoefficientList[Series[2*Sum[x^(2*k - 1) QPochhammer[-x^(2*k), x], {k, nmax}], {x, 0, nmax}], x]]}] (* Vaclav Kotesovec, Mar 28 2017 *) CROSSREFS Cf. A096661, A026832, A179049. Sequence in context: A323905 A079534 A229910 * A332001 A196606 A337697 Adjacent sequences:  A097039 A097040 A097041 * A097043 A097044 A097045 KEYWORD nonn AUTHOR N. J. A. Sloane, Sep 15 2004 EXTENSIONS Name corrected by Peter Bala, Feb 19 2021 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 20 20:02 EDT 2021. Contains 345224 sequences. (Running on oeis4.)