OFFSET
0,2
COMMENTS
a(0) = 1; for n>0, a(n) = 2*A026832(n) (i.e., essentially Fine's numbers L(n) multiplied by 2).
The number of odd-even overpartitions of n: an odd-even overpartition of n is an overpartition of n with the smallest part odd and such that the difference between successive parts is odd if the smaller part is nonoverlined and even otherwise - see Yang 2017. - Peter Bala, Mar 29 2017
REFERENCES
N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 56, Eq. (26.28).
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..1000
Min-Joo Jang, Asymptotic behavior of odd-even partitions, arXiv:1703.01837v1 [math.NT], 2017.
FORMULA
a(n) ~ 1/(3^(5/4)*n^(3/4))*exp(Pi*sqrt(n/3)) [Jang 2017]. - Peter Bala, Mar 29 2017
Conjectural g.f.: 1 + 2*Sum_{n >= 1} q^(n*(n+1)/2)/( (1 + q^n) * Product_{k = 1..n} 1 - q^k ). - Peter Bala, Feb 19 2021
MATHEMATICA
nmax = 60; Flatten[{1, Rest[CoefficientList[Series[2*Sum[x^(2*k - 1) QPochhammer[-x^(2*k), x], {k, nmax}], {x, 0, nmax}], x]]}] (* Vaclav Kotesovec, Mar 28 2017 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Sep 15 2004
EXTENSIONS
Name corrected by Peter Bala, Feb 19 2021
STATUS
approved