The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A229910 a(n) = |{0 < g < prime(n): both g and g + g^{-1} are primitive roots modulo prime(n)}|, where g^{-1} is the inverse of g modulo prime(n). 1
 0, 0, 0, 0, 2, 0, 4, 2, 4, 4, 2, 4, 8, 6, 10, 8, 14, 4, 4, 12, 8, 6, 20, 24, 16, 16, 12, 26, 8, 16, 14, 12, 24, 14, 32, 10, 20, 18, 40, 48, 44, 4, 30, 16, 32, 18, 14, 18, 56, 8, 60, 40, 12, 40, 64, 64, 72, 20, 40, 32, 36, 80, 22, 44, 24, 72, 22, 36, 86, 32, 84, 88, 40, 24, 28, 94, 104, 28, 76, 28 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,5 COMMENTS Conjecture: a(n) > 0 for all n > 6. In other words, for any prime p > 13, there is a primitive root g modulo p such that g + g^{-1} is also a primitive root modulo p, where g^{-1} is the inverse of g modulo p. Note that a(n) is even for any n > 1. In fact, if g is a primitive root modulo a prime p > 3, then the inverse of g mod p is different from g since g^2 cannot be congruent to 1 modulo p. Conjecture: Let F be a finite field with |F| = q > 13. Then there is a primitive root g of F (i.e., a generator of the cyclic group F\{0}) such that g + g^{-1} is also a primitive root of F.  If q > 61, then there exists a primitive root g of F such that g - g^{-1} is also a primitive root of F. The author has proved this for any finite field F with |F| > 2^{66}. LINKS M. F. Hasler, Table of n, a(n) for n = 1..1000 EXAMPLE a(5) = 2 since 2 and 6 are primitive roots modulo prime(5) = 11 with 2*6 == 1 (mod 11) and 2 + 6 = 8 also a primitive root modulo 11. This example recalls that there is no symmetry g -> -g (in Z/pZ) (nor a symmetry w.r.t. odd/even g), therefore one cannot (unfortunately) compute a(n) by taking twice the count of the g0&&Length[Union[Table[Mod[g^k, p], {k, 1, p-1}]]]==p-1 a[n_]:=Sum[If[gp[g, Prime[n]]&&gp[g+PowerMod[g, -1, Prime[n]], Prime[n]], 1, 0], {g, 1, Prime[n]-1}] Table[a[n], {n, 1, 80}] PROG (PARI) A229910(n)=my(p=prime(n)); sum(g=2, p-2, znorder(Mod(g, p))==p-1 & Mod(g, p)^-1+g & znorder(Mod(g, p)^-1+g)==p-1) \\ M. F. Hasler, Oct 06 2013 (PARI) A229910(n)={my(p=prime(n), u=0, s=0, i); n=p-1; for(g=2, p-2, bittest(u, g)&next; znorder(Mod(g, p))

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 19 20:27 EDT 2021. Contains 345145 sequences. (Running on oeis4.)