login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A229911
Decimal expansion of number whose continued fraction expansion is formed by the difference of consecutive primes (A001223).
1
1, 4, 0, 8, 2, 4, 8, 3, 4, 6, 0, 1, 8, 7, 4, 7, 8, 4, 4, 1, 8, 3, 1, 9, 6, 2, 4, 9, 5, 6, 4, 8, 5, 9, 4, 4, 8, 0, 2, 8, 7, 8, 9, 1, 3, 6, 4, 1, 7, 0, 9, 5, 3, 4, 6, 0, 5, 2, 8, 6, 2, 6, 5, 3, 9, 1, 0, 5, 6, 6, 5, 3, 3, 6, 6, 1, 1, 5, 3, 8, 1, 6, 2, 8, 4, 7, 7
OFFSET
1,2
REFERENCES
G. Balzarotti and P. P. Lava, Le sequenze di numeri interi, Hoepli, 2008, p. 157.
LINKS
EXAMPLE
1.408248346018747844183196249564... = [1, 2, 2, 4, 2, 4, 2, 4, 6, 2, 6, 4, 2, 4, 6, ...]
MAPLE
P:=proc(q) local a, n, v; v:=array(1..q); a:=1;
for n from 1 to q do v[n]:=(ithprime(n+1)-ithprime(n)); od;
for n from q by -1 to 1 do a:=v[n]+1/a; od; print(evalf(a, 200));
end: P(10^4);
MATHEMATICA
m=200; RealDigits[FromContinuedFraction[Differences[Prime[Range[1001]]]], 10, m][[1]] (* Zak Seidov, Oct 04 2013 *)
PROG
(PARI) diff(v)=vector(#v-1, i, v[i+1]-v[i])
(M->M[1, 1]/M[2, 1]*1.)(contfracpnqn(diff(primes(100)))) \\ Charles R Greathouse IV, Oct 04 2013
CROSSREFS
Sequence in context: A010638 A123961 A020763 * A244336 A137323 A021075
KEYWORD
nonn,cons,easy
AUTHOR
Paolo P. Lava, Oct 03 2013
STATUS
approved