The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A001918 Least positive primitive root of n-th prime. (Formerly M0242 N0083) 95
 1, 2, 2, 3, 2, 2, 3, 2, 5, 2, 3, 2, 6, 3, 5, 2, 2, 2, 2, 7, 5, 3, 2, 3, 5, 2, 5, 2, 6, 3, 3, 2, 3, 2, 2, 6, 5, 2, 5, 2, 2, 2, 19, 5, 2, 3, 2, 3, 2, 6, 3, 7, 7, 6, 3, 5, 2, 6, 5, 3, 3, 2, 5, 17, 10, 2, 3, 10, 2, 2, 3, 7, 6, 2, 2, 5, 2, 5, 3, 21, 2, 2, 7, 5, 15, 2, 3, 13, 2, 3, 2, 13, 3, 2, 7, 5, 2, 3, 2, 2, 2, 2, 2, 3 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS If k is a primitive root of p=4m+1, then p-k is too. If k is a primitive root of p=4m+3, then p-k isn't, but has order 2m+1. - Jon Perry, Sep 07 2014 REFERENCES M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 864. T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 213. CRC Handbook of Combinatorial Designs, 1996, p. 615. P. Fan and M. Darnell, Sequence Design for Communications Applications, Wiley, NY, 1996, Table A.1. G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, th. 111 Hua Loo Keng, Introduction To Number Theory, 'Table of least primitive roots for primes less than 50000', pp. 52-6, Springer NY 1982. R. Osborn, Tables of All Primitive Roots of Odd Primes Less Than 1000, Univ. Texas Press, 1961. N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS N. J. A. Sloane, Table of n, a(n) for n = 1..10000 M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy]. Loo-keng Hua, On the least primitive root of a prime, Bull. Amer. Math. Soc. 48 (1942), 726-730. T. Oliveira e Silva, Least primitive root of prime numbers Eric Weisstein's World of Mathematics, Primitive Root. EXAMPLE modulo 7: 3^6=1, 3^2=2, 3^7=3, 3^4=4, 3^5=5, 3^3=6, 7=prime(4), 3=a(4). MAPLE A001918 := proc(n) numtheory[primroot](ithprime(n)) ; end proc: MATHEMATICA Table[PrimitiveRoot@Prime@n, {n, 101}] (* Robert G. Wilson v, Dec 15 2005 *) PrimitiveRoot[Prime[Range[110]]] (* Harvey P. Dale, Jan 13 2013 *) PROG (PARI) for(x=1, 1000, print1(lift(znprimroot(prime(x))), ", ")) (Sage) [primitive_root(p) for p in primes(570)] # Zerinvary Lajos, May 24 2009 (Python) from sympy import prime from sympy.ntheory.residue_ntheory import primitive_root def A001918(n): return primitive_root(prime(n)) # Chai Wah Wu, Sep 13 2022 CROSSREFS A column of A060749. Cf. A002233. Sequence in context: A127808 A127809 A127810 * A268616 A331506 A002233 Adjacent sequences: A001915 A001916 A001917 * A001919 A001920 A001921 KEYWORD nonn,nice,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 9 19:36 EST 2022. Contains 358703 sequences. (Running on oeis4.)