The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A060749 Triangle in which n-th row lists all primitive roots modulo the n-th prime. 36
 1, 2, 2, 3, 3, 5, 2, 6, 7, 8, 2, 6, 7, 11, 3, 5, 6, 7, 10, 11, 12, 14, 2, 3, 10, 13, 14, 15, 5, 7, 10, 11, 14, 15, 17, 19, 20, 21, 2, 3, 8, 10, 11, 14, 15, 18, 19, 21, 26, 27, 3, 11, 12, 13, 17, 21, 22, 24, 2, 5, 13, 15, 17, 18, 19, 20, 22, 24, 32, 35, 6, 7, 11, 12, 13, 15, 17, 19, 22, 24, 26, 28, 29, 30, 34, 35 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Number of terms per row is given by A008330. For example, A008330(10) = 12 and the 12 primitive roots associated with prime number 29 are 2,3,8,10,11,14,15,18,19,21,26,27. - Alford Arnold, Aug 22 2004 REFERENCES R. Osborn, Tables of All Primitive Roots of Odd Primes Less Than 1000, Univ. Texas Press, 1961. LINKS T. D. Noe, Table of n, a(n) for n = 1..9076 (first 100 rows) C. W. Curtis, Pioneers of Representation Theory, Amer. Math. Soc., 1999; see p. 3. EXAMPLE The triangle a(n,k) begins (second column pr(n) is here prime(n)): n  pr(n)\k 1  2  3  4  5  6  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27... 1    2     1 2    3     2 3    5     2  3 4    7     3  5 5   11     2  6  7  8 6   13     2  6  7 11 7   17     3  5  6  7 10 11 12 14 8   19     2  3 10 13 14 15 9   23     5  7 10 11 14 15 17 19 20 21 10  29     2  3  8 10 11 14 15 18 19 21 26 27 11  31     3 11 12 13 17 21 22 24 12  37     2  5 13 15 17 18 19 20 22 24 32 35 13  41     6  7 11 12 13 15 17 19 22 24 26 28 29 30 34 35 14  43     3  5 12 18 19 20 26 28 29 30 33 34 15  47     5 10 11 13 15 19 20 22 23 26 29 30 31 33 35 38 39 40 41 43 44 45 16  53     2  3  5  8 12 14 18 19 20 21 22 26 27 31 32 33 34 35 39 41 45 48 50 51 17  59     2  6  8 10 11 13 14 18 23 24 30 31 32 33 34 37 38 39 40 42 43 44 47 50 52 54 55 56 18  61     2  6  7 10 17 18 26 30 31 35 43 44 51 54 55 59 19  67     2  7 11 12 13 18 20 28 31 32 34 41 44 46 48 50 51 57 61 63 20  71     7 11 13 21 22 28 31 33 35 42 44 47 52 53 55 56 59 61 62 63 65 67 68 69 --------------------------------------------------------------------------------- ... reformatted and extended. - Wolfdieter Lang, May 18 2014 MATHEMATICA prQ[p_, a_] := Block[{d = Most@Divisors[p - 1]}, If[ GCD[p, a] == 1, FreeQ[ PowerMod[a, d, p], 1], False]]; f[n_] := Select[Range@n, prQ[n, # ] &]; Table[ f[Prime[n]], {n, 13}] // Flatten (* Robert G. Wilson v, Dec 17 2005 *) primRoots[p_] := (g = PrimitiveRoot[p]; goodOddIntegers = Select[Range[1, p-1, 2], CoprimeQ[#, p-1]&]; allPrimRoots = PowerMod[g, #, p]& /@ goodOddIntegers; Sort[allPrimRoots]); primRoots /@ Prime[Range[50]] // Flatten (* Jean-François Alcover, Nov 12 2014, after Peter Luschny *) roots[n_] := PrimitiveRootList[Prime[n]]; Array[roots, 50] // Flatten (* Jean-François Alcover, Feb 01 2016 *) PROG {Haskell} main=print[[n|n<-[1..p-1], let h x=if x==1 then 1 else 1+h(x*n`mod`p)in h n==p-1]|p<-let p=2:[n|(n, r)<-drop 2(zip[1..](concat[replicate(2*n+1)(toInteger n)|n<-[1..]])) and[n`mod`x/=0|x<-takeWhile(<=r)p]]in p] -- Stoeber (PARI) ar(n)=local(r, p, pr, j); p=prime(n); r=vector(eulerphi(p-1)); pr=znprimroot(p); for(i=1, p-1, if(gcd(i, p-1)==1, r[j++]=lift(pr^i))); vecsort(r) \\ Franklin T. Adams-Watters, Jan 22 2012 (Sage) def primroots(p):     g = primitive_root(p)     znorder = p - 1     is_coprime = lambda x: gcd(x, znorder) == 1     good_odd_integers = filter(is_coprime, [1..p-1, step=2])     all_primroots = [power_mod(g, k, p) for k in good_odd_integers]     all_primroots.sort()     return all_primroots # Minh Van Nguyen, Functional Programming for Mathematicians, Tutorial at sagemath.org for p in primes(1, 50) : print(primroots(p)) # Peter Luschny, Jun 08 2011 CROSSREFS Diagonals give A001918, A071894. Cf. A008330, A046147. Sequence in context: A165120 A165129 A113773 * A138305 A169897 A254309 Adjacent sequences:  A060746 A060747 A060748 * A060750 A060751 A060752 KEYWORD nonn,tabf,nice,easy AUTHOR N. J. A. Sloane, Apr 23 2001 EXTENSIONS More terms from Alford Arnold, Aug 22 2004 More terms from Paul Stoeber (pstoeber(AT)uni-potsdam.de), Oct 08 2005 Terms 26, 28, 29, 30, 34, 35 added; completion of row n=13. - Wolfdieter Lang, May 18 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 3 23:48 EDT 2020. Contains 333207 sequences. (Running on oeis4.)