The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A001921 a(n) = 14*a(n-1) - a(n-2) + 6 for n>1, a(0)=0, a(1)=7. (Formerly M4455 N1885) 20
 0, 7, 104, 1455, 20272, 282359, 3932760, 54776287, 762935264, 10626317415, 148005508552, 2061450802319, 28712305723920, 399910829332567, 5570039304932024, 77580639439715775, 1080558912851088832, 15050244140475527879, 209622859053806301480 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS (a(n)+1)^3 - a(n)^3 is a square (that of A001570(n)). The ratio A001570(n)/a(n) tends to sqrt(3) = 1.73205... as n increases. - Pierre CAMI, Apr 21 2005 Define a(1)=0 a(2)=7 such that 3*(a(1)^2) + 3*a(1) + 1 = j(1)^2 = 1^2 and 3*(a(2)^2) + 3*a(2) + 1 = j(2)^2 = 13^2. Then a(n) = a(n-2) + 8*sqrt(3*(a(n-1)^2) + 3*a(n-1) + 1). Another definition : a(n) such that 3*(a(n)^2) + 3*a(n) + 1 = j(n)^2. - Pierre CAMI, Mar 30 2005 a(n) = A001353(n)*A001075(n+1). For n>0, the triple {a(n), a(n)+1=A001922(n), A001570(n)} forms a near-isosceles triangle with angle 2*Pi/3 bounded by the consecutive sides. - Lekraj Beedassy, Jul 21 2006 Numbers n such that A003215(n) is a square, cf. A006051. - Joerg Arndt, Jan 02 2017 REFERENCES J. D. E. Konhauser et al., Which Way Did the Bicycle Go?, MAA 1996, p. 104. E.-A. Majol, Note #2228, L'Intermédiaire des Mathématiciens, 9 (1902), pp. 183-185. - N. J. A. Sloane, Mar 03 2022 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS T. D. Noe, Table of n, a(n) for n = 0..200 J. Brenner and E. P. Starke, Problem E702, Amer. Math. Monthly, 53 (1946), 465. Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009. Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992 Eric Weisstein's World of Mathematics, Hex Number Index entries for linear recurrences with constant coefficients, signature (15,-15,1). FORMULA G.f.: x*(-7 + x)/(x - 1)/(x^2 - 14*x + 1) (see Simon Plouffe in Maple section). a(n) = (A028230(n+1)-1)/2. - R. J. Mathar, Mar 19 2009 a(n) = 15*a(n-1) - 15*a(n-2) + a(n-3). - Colin Barker, Jan 06 2015 a(n) = -1 - a(-1-n) for all n in Z. - Michael Somos, Aug 17 2018 EXAMPLE G.f. = 7*x + 104*x^2 + 1455*x^3 + 20272*x^4 + 282359*x^5 + 3932760*x^6 + ... - Michael Somos, Aug 17 2018 MAPLE A001921:=z*(-7+z)/(z-1)/(z**2-14*z+1); # Conjectured by Simon Plouffe in his 1992 dissertation. MATHEMATICA t = {0, 7}; Do[AppendTo[t, 14*t[[-1]] - t[[-2]] + 6], {20}]; t (* T. D. Noe, Aug 17 2012 *) LinearRecurrence[{15, -15, 1}, {0, 7, 104}, 19] (* Michael De Vlieger, Jan 02 2017 *) a[ n_] := -1/2 + (ChebyshevT[n + 1, 7] - ChebyshevT[n, 7]) / 12; (* Michael Somos, Aug 17 2018 *) PROG (PARI) concat(0, Vec(x*(x-7)/((x-1)*(x^2-14*x+1)) + O(x^100))) \\ Colin Barker, Jan 06 2015 (PARI) {a(n) = -1/2 + (polchebyshev(n + 1, 1, 7) - polchebyshev(n, 1, 7)) / 12}; /* Michael Somos, Aug 17 2018 */ (Magma) [Round(-1/2 - (1/6)*Sqrt(3)*(7-4*Sqrt(3))^n + (1/6)*Sqrt(3)*(7+4*Sqrt(3))^n + (1/4)*(7+4*Sqrt(3))^n + (1/4)*(7-4*Sqrt(3))^n): n in [0..50]]; // G. C. Greubel, Nov 04 2017 CROSSREFS Cf. A001570, A001922, A006051. Cf. numbers m such that k*A000217(m)+1 is a square: A006451 for k=1; A233450 for k=3; A001652 for k=4; A129556 for k=5; this sequence for k=6. - Bruno Berselli, Dec 16 2013 Sequence in context: A280644 A322646 A224706 * A215552 A357344 A272070 Adjacent sequences: A001918 A001919 A001920 * A001922 A001923 A001924 KEYWORD nonn,easy AUTHOR N. J. A. Sloane EXTENSIONS More terms from James A. Sellers, Jul 04 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 15 16:36 EDT 2024. Contains 374333 sequences. (Running on oeis4.)