|
|
A001921
|
|
a(n) = 14*a(n-1) - a(n-2) + 6 for n>1, a(0)=0, a(1)=7.
(Formerly M4455 N1885)
|
|
20
|
|
|
0, 7, 104, 1455, 20272, 282359, 3932760, 54776287, 762935264, 10626317415, 148005508552, 2061450802319, 28712305723920, 399910829332567, 5570039304932024, 77580639439715775, 1080558912851088832, 15050244140475527879, 209622859053806301480
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
(a(n)+1)^3 - a(n)^3 is a square (that of A001570(n)).
The ratio A001570(n)/a(n) tends to sqrt(3) = 1.73205... as n increases. - Pierre CAMI, Apr 21 2005
Define a(1)=0 a(2)=7 such that 3*(a(1)^2) + 3*a(1) + 1 = j(1)^2 = 1^2 and 3*(a(2)^2) + 3*a(2) + 1 = j(2)^2 = 13^2. Then a(n) = a(n-2) + 8*sqrt(3*(a(n-1)^2) + 3*a(n-1) + 1). Another definition : a(n) such that 3*(a(n)^2) + 3*a(n) + 1 = j(n)^2. - Pierre CAMI, Mar 30 2005
a(n) = A001353(n)*A001075(n+1). For n>0, the triple {a(n), a(n)+1=A001922(n), A001570(n)} forms a near-isosceles triangle with angle 2*Pi/3 bounded by the consecutive sides. - Lekraj Beedassy, Jul 21 2006
Numbers n such that A003215(n) is a square, cf. A006051. - Joerg Arndt, Jan 02 2017
|
|
REFERENCES
|
J. D. E. Konhauser et al., Which Way Did the Bicycle Go?, MAA 1996, p. 104.
E.-A. Majol, Note #2228, L'Intermédiaire des Mathématiciens, 9 (1902), pp. 183-185. - N. J. A. Sloane, Mar 03 2022
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
|
|
LINKS
|
T. D. Noe, Table of n, a(n) for n = 0..200
J. Brenner and E. P. Starke, Problem E702, Amer. Math. Monthly, 53 (1946), 465.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
Eric Weisstein's World of Mathematics, Hex Number
Index entries for linear recurrences with constant coefficients, signature (15,-15,1).
|
|
FORMULA
|
G.f.: x*(-7 + x)/(x - 1)/(x^2 - 14*x + 1) (see Simon Plouffe in Maple section).
a(n) = -1/2 - (1/6)*sqrt(3)*(7-4*sqrt(3))^n + (1/6)*sqrt(3)*(7+4*sqrt(3))^n + (1/4)*(7+4*sqrt(3))^n + (1/4)*(7-4*sqrt(3))^n. - Paolo P. Lava, Jun 19 2008
a(n) = (A028230(n+1)-1)/2. - R. J. Mathar, Mar 19 2009
a(n) = 15*a(n-1) - 15*a(n-2) + a(n-3). - Colin Barker, Jan 06 2015
a(n) = -1 - a(-1-n) for all n in Z. - Michael Somos, Aug 17 2018
|
|
EXAMPLE
|
G.f. = 7*x + 104*x^2 + 1455*x^3 + 20272*x^4 + 282359*x^5 + 3932760*x^6 + ... - Michael Somos, Aug 17 2018
|
|
MAPLE
|
A001921:=z*(-7+z)/(z-1)/(z**2-14*z+1); # Conjectured by Simon Plouffe in his 1992 dissertation.
|
|
MATHEMATICA
|
t = {0, 7}; Do[AppendTo[t, 14*t[[-1]] - t[[-2]] + 6], {20}]; t (* T. D. Noe, Aug 17 2012 *)
LinearRecurrence[{15, -15, 1}, {0, 7, 104}, 19] (* Michael De Vlieger, Jan 02 2017 *)
a[ n_] := -1/2 + (ChebyshevT[n + 1, 7] - ChebyshevT[n, 7]) / 12; (* Michael Somos, Aug 17 2018 *)
|
|
PROG
|
(PARI) concat(0, Vec(x*(x-7)/((x-1)*(x^2-14*x+1)) + O(x^100))) \\ Colin Barker, Jan 06 2015
(PARI) {a(n) = -1/2 + (polchebyshev(n + 1, 1, 7) - polchebyshev(n, 1, 7)) / 12}; /* Michael Somos, Aug 17 2018 */
(Magma) [Round(-1/2 - (1/6)*Sqrt(3)*(7-4*Sqrt(3))^n + (1/6)*Sqrt(3)*(7+4*Sqrt(3))^n + (1/4)*(7+4*Sqrt(3))^n + (1/4)*(7-4*Sqrt(3))^n): n in [0..50]]; // G. C. Greubel, Nov 04 2017
|
|
CROSSREFS
|
Cf. A001570, A001922, A006051.
Cf. numbers m such that k*A000217(m)+1 is a square: A006451 for k=1; A233450 for k=3; A001652 for k=4; A129556 for k=5; this sequence for k=6. - Bruno Berselli, Dec 16 2013
Sequence in context: A280644 A322646 A224706 * A215552 A357344 A272070
Adjacent sequences: A001918 A001919 A001920 * A001922 A001923 A001924
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
N. J. A. Sloane
|
|
EXTENSIONS
|
More terms from James A. Sellers, Jul 04 2000
|
|
STATUS
|
approved
|
|
|
|