login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A179049
Odd-even partitions: number of partitions into distinct parts where all differences between consecutive parts are odd and the minimal part is odd.
7
1, 1, 0, 2, 0, 2, 1, 3, 1, 3, 3, 4, 4, 4, 6, 6, 8, 6, 12, 8, 14, 10, 19, 13, 23, 16, 29, 21, 35, 26, 43, 34, 50, 43, 61, 54, 72, 67, 85, 84, 100, 103, 119, 126, 138, 155, 163, 186, 191, 224, 224, 268, 263, 319, 308, 378, 360, 447, 422, 523, 494, 614, 576, 716, 674, 833, 787, 964, 917, 1118
OFFSET
0,4
COMMENTS
Parts are odd, even, odd, even, ... [Joerg Arndt, Oct 27 2012]
LINKS
G. E. Andrews, Ramanujan’s “lost” notebook. IV. Stacks and alternating parity in partitions, Adv. in Math. 53 (1984), no. 1, 55-74.
Min-Joo Jang, Asymptotic behavior of odd-even partitions, arXiv:1703.01837v1 [math.NT], 2017.
FORMULA
G.f.: Sum_{n>=0} x^(n*(n+1)/2) / Product_{k=1..n} (1 - x^(2*k)).
a(n) ~ (1/(2*sqrt(5)*n^(3/4)))*exp(Pi*sqrt(n/5)) [Jang 2017]. - Peter Bala, Mar 28 2017
EXAMPLE
From Joerg Arndt, Oct 27 2012: (Start)
The a(20) = 14 such partitions of 20 are:
[ 1] 1 2 3 14
[ 2] 1 2 5 12
[ 3] 1 2 7 10
[ 4] 1 2 17
[ 5] 1 4 5 10
[ 6] 1 4 7 8
[ 7] 1 4 15
[ 8] 1 6 13
[ 9] 1 8 11
[10] 3 4 5 8
[11] 3 4 13
[12] 3 6 11
[13] 3 8 9
[14] 5 6 9
(End)
MAPLE
b:= proc(n, i) option remember; `if`(n=0, 1,
`if`(i>n, 0, b(n, i+2)+b(n-i, i+1)))
end:
a:= n-> b(n, 1):
seq(a(n), n=0..100); # Alois P. Heinz, Nov 08 2012; revised Feb 24 2020
MATHEMATICA
b[n_, i_, t_] := b[n, i, t] = If[n==0, Mod[t, 2], If[i<1, 0, b[n, i-1, t] + If[i <= n && Mod[i, 2] != t, b[n-i, i-1, Mod[i, 2]], 0]]]; a[n_] := If[n==0, 1, Sum[b[n-i, i-1, Mod[i, 2]], {i, 1, n}]]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Mar 24 2015, after Alois P. Heinz *)
PROG
(Sage)
odd_diffs = lambda x: all(abs(d) % 2 for d in differences(x))
satisfies = lambda p: not p or (min(p) % 2 and odd_diffs(p))
def A179049(n):
return len([1 for p in Partitions(n, max_slope=-1) if satisfies(p)])
# D. S. McNeil, Jan 04 2011; adapted by F. Chapoton, Feb 24 2020
(Sage) # Alternative, after Alois P. Heinz:
def A179049(n):
@cached_function
def h(n, k):
if n == 0: return 1
if k > n: return 0
return h(n, k+2) + h(n-k, k+1)
return h(n, 1)
[A179049(n) for n in range(70)] # Peter Luschny, Feb 25 2020
(PARI) N=99; x='x+O('x^N); Vec(sum(n=0, N, x^(n*(n+1)/2)/prod(k=1, n, 1-x^(2*k))))
CROSSREFS
Cf. A000009.
Cf. A218355 (parts are even, odd, even, odd, ...).
Sequence in context: A025803 A029185 A029184 * A341976 A029221 A304034
KEYWORD
nonn,easy
AUTHOR
Joerg Arndt, Jan 04 2011
STATUS
approved