login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A179046
Partitions into distinct parts with minimal difference 3 and minimal part >= 3.
1
1, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 7, 8, 9, 11, 12, 14, 16, 18, 20, 23, 25, 28, 32, 35, 39, 44, 49, 54, 61, 67, 75, 83, 92, 101, 113, 123, 136, 150, 165, 180, 199, 217, 239, 261, 286, 312, 343, 373, 408, 445, 486, 528, 577, 626, 682, 741, 805, 873, 949, 1027, 1114
OFFSET
0,10
LINKS
FORMULA
G.f.: sum(n>=0, x^(3*n*(n+1)/2) / prod(k=1,n,1-x^k) ), this is a special case of the g.f. sum(n>=0, x^(D*n*(n+1)/2) / prod(k=1,n,1-x^k) ) for partitions into distinct parts with minimal difference D and minimal part >= D. - Joerg Arndt, Apr 07 2011
The g.f. for partitions into distinct parts with minimal difference D and no restriction on the minimal part is sum(n>=0, x^(D*n*(n+1)/2 - (D-1)*n) / prod(k=1..n, 1-x^k) ). - Joerg Arndt, Mar 31 2014
EXAMPLE
a(13)=4 because there are 4 such partitions of 13: 3+10=4+9=5+8=13.
a(0)=1 because the condition is void for the empty list.
MAPLE
b:= proc(n, i) option remember; `if`(n=0, 1,
`if`(n>i*(i+1)/2-3, 0, b(n, i-1)+
`if`(i>n, 0, b(n-i, i-3))))
end:
a:= n-> b(n$2):
seq(a(n), n=0..80); # Alois P. Heinz, Apr 02 2014
MATHEMATICA
b[n_, i_] := b[n, i] = If[n == 0, 1,
If[n > i(i+1)/2 - 3, 0, b[n, i - 1] +
If[i > n, 0, b[n - i, i - 3]]]];
a[n_] := b[n, n];
a /@ Range[0, 80] (* Jean-François Alcover, Nov 20 2020, after Alois P. Heinz *)
PROG
(Sage)
A179046 = lambda n: Partitions(n, max_slope=-3).filter(lambda x: not x or min(x) >= 3).cardinality() # D. S. McNeil, Jan 04 2011
(PARI)
N=66; x='x+O('x^N);
gf = sum(n=0, N, x^(3*n*(n+1)/2)/prod(k=1, n, 1-x^k));
v = Vec(gf)
/* Joerg Arndt, Apr 07 2011 */
CROSSREFS
Cf. A003106 (min diff=2, min part=2), A000009 (min diff=1, min part=1).
Cf. A003114 (min diff=2), A025157 (min diff=3), A025158 (min diff=4), A025159 (min diff=5), A025160 (min diff=6), A025161 (min diff=7), A025162 (min diff=8).
Sequence in context: A180639 A025766 A025158 * A264592 A026827 A025152
KEYWORD
nonn
AUTHOR
Joerg Arndt, Jan 04 2011
STATUS
approved