Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #34 Nov 20 2020 05:53:47
%S 1,0,0,1,1,1,1,1,1,2,2,3,3,4,4,5,5,6,7,8,9,11,12,14,16,18,20,23,25,28,
%T 32,35,39,44,49,54,61,67,75,83,92,101,113,123,136,150,165,180,199,217,
%U 239,261,286,312,343,373,408,445,486,528,577,626,682,741,805,873,949,1027,1114
%N Partitions into distinct parts with minimal difference 3 and minimal part >= 3.
%H Alois P. Heinz, <a href="/A179046/b179046.txt">Table of n, a(n) for n = 0..1000</a>
%F G.f.: sum(n>=0, x^(3*n*(n+1)/2) / prod(k=1,n,1-x^k) ), this is a special case of the g.f. sum(n>=0, x^(D*n*(n+1)/2) / prod(k=1,n,1-x^k) ) for partitions into distinct parts with minimal difference D and minimal part >= D. - _Joerg Arndt_, Apr 07 2011
%F The g.f. for partitions into distinct parts with minimal difference D and no restriction on the minimal part is sum(n>=0, x^(D*n*(n+1)/2 - (D-1)*n) / prod(k=1..n, 1-x^k) ). - _Joerg Arndt_, Mar 31 2014
%e a(13)=4 because there are 4 such partitions of 13: 3+10=4+9=5+8=13.
%e a(0)=1 because the condition is void for the empty list.
%p b:= proc(n, i) option remember; `if`(n=0, 1,
%p `if`(n>i*(i+1)/2-3, 0, b(n, i-1)+
%p `if`(i>n, 0, b(n-i, i-3))))
%p end:
%p a:= n-> b(n$2):
%p seq(a(n), n=0..80); # _Alois P. Heinz_, Apr 02 2014
%t b[n_, i_] := b[n, i] = If[n == 0, 1,
%t If[n > i(i+1)/2 - 3, 0, b[n, i - 1] +
%t If[i > n, 0, b[n - i, i - 3]]]];
%t a[n_] := b[n, n];
%t a /@ Range[0, 80] (* _Jean-François Alcover_, Nov 20 2020, after _Alois P. Heinz_ *)
%o (Sage)
%o A179046 = lambda n: Partitions(n,max_slope=-3).filter(lambda x: not x or min(x) >= 3).cardinality() # _D. S. McNeil_, Jan 04 2011
%o (PARI)
%o N=66; x='x+O('x^N);
%o gf = sum(n=0,N, x^(3*n*(n+1)/2)/prod(k=1,n,1-x^k));
%o v = Vec(gf)
%o /* _Joerg Arndt_, Apr 07 2011 */
%Y Cf. A003106 (min diff=2, min part=2), A000009 (min diff=1, min part=1).
%Y Cf. A003114 (min diff=2), A025157 (min diff=3), A025158 (min diff=4), A025159 (min diff=5), A025160 (min diff=6), A025161 (min diff=7), A025162 (min diff=8).
%K nonn
%O 0,10
%A _Joerg Arndt_, Jan 04 2011