

A304034


Number of ways to write n as p + 2^k + (1+(n mod 2))*3^m with p prime, where k and m are positive integers with 2^k + (1+(n mod 2))*3^m squarefree.


16



0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 0, 2, 1, 3, 1, 4, 2, 5, 1, 3, 2, 5, 1, 7, 3, 3, 4, 4, 4, 6, 2, 3, 5, 6, 2, 7, 3, 5, 5, 6, 5, 9, 3, 4, 6, 7, 2, 12, 2, 5, 6, 7, 4, 10, 3, 3, 5, 8, 2, 8, 3, 4, 6, 8, 5, 9, 4, 2, 7, 7, 3, 13, 5, 5, 9, 7, 5, 13, 3, 6, 10, 7, 5, 10, 5, 7, 7, 9, 8, 13
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,10


COMMENTS

Conjecture: a(n) > 0 for all n > 11.
This has been verified for n up to 10^10.
See also A304081 for a similar conjecture.


LINKS

ZhiWei Sun, Table of n, a(n) for n = 1..10000
ZhiWei Sun, Mixed sums of primes and other terms, in: Additive Number Theory (edited by D. Chudnovsky and G. Chudnovsky), pp. 341353, Springer, New York, 2010.
ZhiWei Sun, Conjectures on representations involving primes, in: M. Nathanson (ed.), Combinatorial and Additive Number Theory II, Springer Proc. in Math. & Stat., Vol. 220, Springer, Cham, 2017, pp. 279310. (See also arXiv:1211.1588 [math.NT], 20122017.)


EXAMPLE

a(8) = 1 since 8 = 3 + 2^1 + 3^1 with 3 prime and 2^1 + 3^1 = 5 squarefree.
a(13) = 1 since 13 = 3 + 2^2 + 2*3^1 with 3 prime and 2^2 + 2*3^1 = 2*5 squarefree.
a(19) = 1 since 19 = 5 + 2^3 + 2*3^1 with 5 prime and 2^3 + 2*3^1 = 2*7 squarefree.
a(23) = 1 since 23 = 13 + 2^2 + 2*3^1 with 13 prime and 2^2 + 2*3 = 2*5 squarefree.


MATHEMATICA

tab={}; Do[r=0; Do[If[SquareFreeQ[2^k+(1+Mod[n, 2])*3^m]&&PrimeQ[n2^k(1+Mod[n, 2])*3^m], r=r+1], {k, 1, Log[2, n]}, {m, 1, If[2^k==n, 1, Log[3, (n2^k)/(1+Mod[n, 2])]]}]; tab=Append[tab, r], {n, 1, 90}]; Print[tab]


CROSSREFS

Cf. A000040, A000079, A000224, A005117, A118955, A155216, A156695, A273812, A302982, A302984, A303233, A303234, A303338, A303363, A303389, A303393, A303399, A303428, A303401, A303432, A303434, A303539, A303540, A303541, A303543, A303601, A303637, A303639, A303656, A303660, A303702, A303821, A303932, A303934, A303949, A304031, A304032, A304081.
Sequence in context: A029184 A179049 A029221 * A029183 A213423 A265753
Adjacent sequences: A304031 A304032 A304033 * A304035 A304036 A304037


KEYWORD

nonn


AUTHOR

ZhiWei Sun, May 06 2018


STATUS

approved



