login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A303932 Number of ways to write 2*n as p + 2^k + 3^m, where p is a prime with 11 a quadratic residue modulo p, and k and m are nonnegative integers. 11
0, 1, 1, 1, 3, 4, 2, 3, 3, 1, 3, 5, 2, 1, 4, 2, 1, 4, 3, 4, 4, 2, 3, 7, 4, 2, 6, 3, 2, 4, 4, 3, 3, 2, 4, 6, 2, 1, 6, 2, 2, 6, 5, 6, 5, 5, 6, 8, 3, 5, 8, 5, 3, 7, 6, 5, 7, 6, 9, 7, 5, 7, 7, 3, 5, 9, 5, 7, 9, 6, 11, 10, 5, 11, 10, 4, 5, 13, 3, 5 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,5
COMMENTS
Conjecture 1. a(n) > 0 for all n > 1, i.e., any even number greater than two can be written as the sum of a power 2, a power of 3 and a prime p with 11 a quadratic residue modulo p.
Conjecture 2. For any integer n > 2, we can write 2*n as p + 2^k + 3^m, where p is a prime with 11 a quadratic nonresidue modulo p, and k and m are nonnegative integers.
We have verified Conjectures 1 and 2 for n up to 5*10^8.
LINKS
Zhi-Wei Sun, Mixed sums of primes and other terms, in: Additive Number Theory (edited by D. Chudnovsky and G. Chudnovsky), pp. 341-353, Springer, New York, 2010.
Zhi-Wei Sun, Conjectures on representations involving primes, in: M. Nathanson (ed.), Combinatorial and Additive Number Theory II, Springer Proc. in Math. & Stat., Vol. 220, Springer, Cham, 2017, pp. 279-310. (See also arXiv:1211.1588 [math.NT], 2012-2017.)
EXAMPLE
a(2) = 1 since 2*2 = 2 + 2^0 + 3^0 with 11 a quadratic residue modulo the prime 2.
a(3) = 1 since 2*3 = 2 + 2^0 + 3^1 with 11 a quadratic residue modulo the prime 2.
a(10) = 1 since 2*10 = 7 + 2^2 + 3^2 with 11 a quadratic residue modulo the prime 7.
a(14) = 1 since 2*14 = 19 + 2^3 + 3^0 with 11 a quadratic residue modulo the prime 19.
a(17) = 1 since 2*17 = 5 + 2^1 + 3^3 with 11 a quadratic residue modulo the prime 5.
a(38) = 1 since 2*38 = 37 + 2^1 + 3^3 with 11 a quadratic residue modulo the prime 37.
MATHEMATICA
PQ[n_]:=PQ[n]=n==2||(n>2&&PrimeQ[n]&&JacobiSymbol[11, n]==1);
tab={}; Do[r=0; Do[If[PQ[2n-2^k-3^m], r=r+1], {k, 0, Log[2, 2n-1]}, {m, 0, Log[3, 2n-2^k]}]; tab=Append[tab, r], {n, 1, 80}]; Print[tab]
CROSSREFS
Sequence in context: A254175 A088916 A117966 * A121891 A346780 A271590
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, May 02 2018
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 16 03:28 EDT 2024. Contains 371696 sequences. (Running on oeis4.)