OFFSET
1,2
COMMENTS
The conjecture in A303540 has the following equivalent version: Each integer n > 1 can be written as the sum of two terms of the current sequence.
This has been verified for all n = 2..10^10.
LINKS
Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
Zhi-Wei Sun, Refining Lagrange's four-square theorem, J. Number Theory 175(2017), 167-190.
Zhi-Wei Sun, New conjectures on representations of integers (I), Nanjing Univ. J. Math. Biquarterly 34(2017), no. 2, 97-120.
Zhi-Wei Sun, Restricted sums of four squares, arXiv:1701.05868 [math.NT], 2017-2018.
EXAMPLE
a(1) = 1 with 0^2 + binomial(2*0,0) = 1.
a(7) = 10 with 2^2 + binomial(2*2,2) = 10.
a(8) = 11 with 3^2 + binomial(2*1,1) = 11.
MATHEMATICA
c[n_]:=c[n]=Binomial[2n, n];
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
tab={}; n=0; Do[k=0; Label[bb]; If[c[k]>m, Goto[aa]]; If[SQ[m-c[k]], n=n+1; tab=Append[tab, m]; Goto[aa], k=k+1; Goto[bb]]; Label[aa], {m, 1, 134}]; Print[tab]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Apr 25 2018
STATUS
approved