The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.



(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A000984 Central binomial coefficients: binomial(2*n,n) = (2*n)!/(n!)^2.
(Formerly M1645 N0643)
1, 2, 6, 20, 70, 252, 924, 3432, 12870, 48620, 184756, 705432, 2704156, 10400600, 40116600, 155117520, 601080390, 2333606220, 9075135300, 35345263800, 137846528820, 538257874440, 2104098963720, 8233430727600, 32247603683100, 126410606437752, 495918532948104, 1946939425648112 (list; graph; refs; listen; history; text; internal format)



Devadoss refers to these numbers as type B Catalan numbers (cf. A000108).

Equal to the binomial coefficient sum Sum_{k=0..n} binomial(n,k)^2.

Number of possible interleavings of a program with n atomic instructions when executed by two processes. - Manuel Carro (mcarro(AT)fi.upm.es), Sep 22 2001

Convolving a(n) with itself yields A000302, the powers of 4. - T. D. Noe, Jun 11 2002

Number of ordered trees with 2n+1 edges, having root of odd degree and nonroot nodes of outdegree 0 or 2. - Emeric Deutsch, Aug 02 2002

Also number of directed, convex polyominoes having semiperimeter n+2.

Also number of diagonally symmetric, directed, convex polyominoes having semiperimeter 2n+2. - Emeric Deutsch, Aug 03 2002

Also Sum_{k=0..n} binomial(n+k-1,k). - Vladeta Jovovic, Aug 28 2002

The second inverse binomial transform of this sequence is this sequence with interpolated zeros. Its g.f. is (1 - 4*x^2)^(-1/2), with n-th term C(n,n/2)(1+(-1)^n)/2. - Paul Barry, Jul 01 2003

Number of possible values of a 2n-bit binary number for which half the bits are on and half are off. - Gavin Scott (gavin(AT)allegro.com), Aug 09 2003

Ordered partitions of n with zeros to n+1, e.g., for n=4 we consider the ordered partitions of 11110 (5), 11200 (30), 13000 (20), 40000 (5) and 22000 (10), total 70 and a(4)=70. See A001700 (esp. Mambetov Bektur's comment). - Jon Perry, Aug 10 2003

Number of nondecreasing sequences of n integers from 0 to n: a(n) = Sum_{i_1=0..n} Sum_{i_2=i_1..n}...Sum_{i_n=i_{n-1}..n}(1). - J. N. Bearden (jnb(AT)eller.arizona.edu), Sep 16 2003

Number of peaks at odd level in all Dyck paths of semilength n+1. Example: a(2)=6 because we have U*DU*DU*D, U*DUUDD, UUDDU*D, UUDUDD, UUU*DDD, where U=(1,1), D=(1,-1) and * indicates a peak at odd level. Number of ascents of length 1 in all Dyck paths of semilength n+1 (an ascent in a Dyck path is a maximal string of up steps). Example: a(2)=6 because we have uDuDuD, uDUUDD, UUDDuD, UUDuDD, UUUDDD, where an ascent of length 1 is indicated by a lower case letter. - Emeric Deutsch, Dec 05 2003

a(n-1) = number of subsets of 2n-1 distinct elements taken n at a time that contain a given element. E.g., n=4 -> a(3)=20 and if we consider the subsets of 7 taken 4 at a time with a 1 we get (1234, 1235, 1236, 1237, 1245, 1246, 1247, 1256, 1257, 1267, 1345, 1346, 1347, 1356, 1357, 1367, 1456, 1457, 1467, 1567) and there are 20 of them. - Jon Perry, Jan 20 2004

The dimension of a particular (necessarily existent) absolutely universal embedding of the unitary dual polar space DSU(2n,q^2) where q>2. - J. Taylor (jt_cpp(AT)yahoo.com), Apr 02 2004.

Number of standard tableaux of shape (n+1, 1^n). - Emeric Deutsch, May 13 2004

Erdős, Graham et al. conjectured that a(n) is never squarefree for sufficiently large n (cf. Graham, Knuth, Patashnik, Concrete Math., 2nd ed., Exercise 112). Sárközy showed that if s(n) is the square part of a(n), then s(n) is asymptotically (sqrt(2)-2)*(sqrt(n))*(Riemann Zeta Function(1/2)). Granville and Ramare proved that the only squarefree values are a(1)=2, a(2)=6 and a(4)=70. - Jonathan Vos Post, Dec 04 2004 [For more about this conjecture, see A261009. - N. J. A. Sloane, Oct 25 2015]

The MathOverflow link contains the following comment (slightly edited): The Erdős square-free conjecture (that a(n) is never squarefree for n>4) was proved in 1980 by Sárközy, A. (On divisors of binomial coefficients. I. J. Number Theory 20 (1985), no. 1, 70-80.) who showed that the conjecture holds for all sufficiently large values of n, and by A. Granville and O. Ramaré (Explicit bounds on exponential sums and the scarcity of squarefree binomial coefficients. Mathematika 43 (1996), no. 1, 73-107) who showed that it holds for all n>4. - Fedor Petrov, Nov 13 2010. [From N. J. A. Sloane, Oct 29 2015]

p divides a((p-1)/2)-1=A030662(n) for prime p=5, 13, 17, 29, 37, 41, 53, 61, 73, 89, 97, ... = A002144(n) Pythagorean primes: primes of form 4n+1. - Alexander Adamchuk, Jul 04 2006

The number of direct routes from my home to Granny's when Granny lives n blocks south and n blocks east of my home in Grid City. To obtain a direct route, from the 2n blocks, choose n blocks on which one travels south. For example, a(2)=6 because there are 6 direct routes: SSEE, SESE, SEES, EESS, ESES and ESSE. - Dennis P. Walsh, Oct 27 2006

Inverse: With q = -log(log(16)/(pi a(n)^2)), ceiling((q + log(q))/log(16)) = n. - David W. Cantrell (DWCantrell(AT)sigmaxi.net), Feb 26 2007

Number of partitions with Ferrers diagrams that fit in an n X n box (including the empty partition of 0). Example: a(2) = 6 because we have: empty, 1, 2, 11, 21 and 22. - Emeric Deutsch, Oct 02 2007

So this is the 2-dimensional analog of A008793. - William Entriken, Aug 06 2013

The number of walks of length 2n on an infinite linear lattice that begins and ends at the origin. - Stefan Hollos (stefan(AT)exstrom.com), Dec 10 2007

The number of lattice paths from (0,0) to (n,n) using steps (1,0) and (0,1). - Joerg Arndt, Jul 01 2011

Integral representation: C(2n,n)=1/Pi Integral [(2x)^(2n)/sqrt(1 - x^2),{x,-1, 1}], i.e., C(2n,n)/4^n is the moment of order 2n of the arcsin distribution on the interval (-1,1). - N-E. Fahssi, Jan 02 2008

Also the Catalan transform of A000079. - R. J. Mathar, Nov 06 2008

Straub, Amdeberhan and Moll: "... it is conjectured that there are only finitely many indices n such that C_n is not divisible by any of 3, 5, 7 and 11. Finally, we remark that Erdős et al. conjectured that the central binomial coefficients C_n are never squarefree for n > 4 which has been proved by Granville and Ramare." - Jonathan Vos Post, Nov 14 2008

Equals INVERT transform of A081696: (1, 1, 3, 9, 29, 97, 333, ...). - Gary W. Adamson, May 15 2009

Also, in sports, the number of ordered ways for a "Best of 2n-1 Series" to progress. For example, a(2) = 6 means there are six ordered ways for a "best of 3" series to progress. If we write A for a win by "team A" and B for a win by "team B" and if we list the played games chronologically from left to right then the six ways are AA, ABA, BAA, BB, BAB, and ABB. (Proof: To generate the a(n) ordered ways: Write down all a(n) ways to designate n of 2n games as won by team A. Remove the maximal suffix of identical letters from each of these.) - Lee A. Newberg, Jun 02 2009

Number of n X n binary arrays with rows, considered as binary numbers, in nondecreasing order, and columns, considered as binary numbers, in nonincreasing order. - R. H. Hardin, Jun 27 2009

Hankel transform is 2^n. - Paul Barry, Aug 05 2009

It appears that a(n) is also the number of quivers in the mutation class of twisted type BC_n for n>=2.

Central terms of Pascal's triangle: a(n) = A007318(2*n,n). - Reinhard Zumkeller, Nov 09 2011

Number of words on {a,b} of length 2n such that no prefix of the word contains more b's than a's. - Jonathan Nilsson, Apr 18 2012

From Pascal's triangle take row(n) with terms in order a1,a2,..a(n) and row(n+1) with terms b1,b2,..b(n), then 2*(a1*b1 + a2*b2 + ... + a(n)*b(n)) to get the terms in this sequence. - J. M. Bergot, Oct 07 2012. For example using rows 4 and 5: 2*(1*(1) + 4*(5) + 6*(10) + 4*(10) + 1*(5) = 252, the sixth term in this sequence.

Take from Pascal's triangle row(n) with terms b1, b2,..., b(n+1) and row(n+2) with terms c1, c2,..., c(n+3) and find the sum b1*c2 + b2*c3 + ... + b(n+1)*c(n+2) to get A000984(n+1).  Example using row(3) and row(5) gives sum 1*(5)+3*(10)+3*(10)+1*(5) = 70 = A000984(4). - J. M. Bergot, Oct 31 2012

a(n) == 2 mod n^3 iff n is a prime > 3. (See Mestrovic link, p. 4.) - Gary Detlefs, Feb 16 2013

Conjecture: For any positive integer n, the polynomial sum_{k=0}^n a(k)x^k is irreducible over the field of rational numbers. In general, for any integer m>1 and n>0, the polynomial f_{m,n}(x) = Sum_{k=0..n} (m*k)!/(k!)^m*x^k is irreducible over the field of rational numbers. - Zhi-Wei Sun, Mar 23 2013

This comment generalizes the comment dated Oct 31 2012 and the second of the sequence’s original comments.  For j = 1 to n, a(n) = Sum_{k=0..j} C(j,k)* C(2n-j, n-k) = 2*Sum_{k=0..j-1} C(j-1,k)*C(2n-j, n-k). - Charlie Marion, Jun 07 2013

The differences between consecutive terms of the sequence of the quotients between consecutive terms of this sequence form a sequence containing the reciprocals of the triangular numbers. In other words, a(n+1)/a(n)-a(n)/a(n-1) = 2/(n*(n+1)). - Christian Schulz, Jun 08 2013

Number of distinct strings of length 2n using n letters A and n letters B. - Hans Havermann, May 07 2014

From Fung Lam, May 19 2014: (Start)

Expansion of  G.f. A(x) = 1/(1+q*x*c(x)), where parameter q is positive or negative (except q=-1), and c(x) is the g.f. of A000108 for Catalan numbers. The case of q=-1 recovers the g.f. of A000108 as xA^2-A+1=0. The present sequence A000984 refers to q=-2. Recurrence: (1+q)*(n+2)*a(n+2) + ((q*q-4*q-4)*n + 2*(q*q-q-1))*a(n+1) - 2*q*q*(2*n+1)*a(n) = 0, a(0)=1, a(1)=-q. Asymptotics: a(n) ~ ((q+2)/(q+1)*(q^2/(-q-1))^n, q<=-3, a(n) ~ (-1)^n*((q+2)/(q+1))*(q^2/(q+1))^n, q>=5, and a(n) ~ -Kq*2^(2*n)/sqrt(Pi*n^3), where the multiplicative constant Kq is given by K1=1/9 (q=1), K2=1/8 (q=2), K3=3/25 (q=3), K4=1/9 (q=4). These formulas apply to existing sequences A126983 (q=1), A126984 (q=2), A126982 (q=3), A126986 (q=4), A126987 (q=5), A127017 (q=6), A127016 (q=7), A126985 (q=8), A127053 (q=9), and to A007854 (q=-3), A076035 (q=-4), A076036 (q=-5), A127628 (q=-6), A126694 (q=-7), A115970 (q=-8). (End)

a(n)*(2^n)^(j-2) equals S(n), where S(n) is the n-th number in the self-convolved sequence which yields the powers of 2^j for all integers j, n>=0. For example, when n=5 and j=4, a(5)=252; 252*(2^5)^(4-2) = 252*1024 = 258048.  The self-convolved sequence which yields powers of 16 is {1, 8, 96, 1280, 17920, 258048, ...}; i.e., S(5) = 258048. Note that the convolved sequences will be composed of numbers decreasing from 1 to 0, when j<2 (exception being j=1, where the first two numbers in the sequence are 1 and all others decreasing). - Bob Selcoe, Jul 16 2014

The variance of the n-th difference of a sequence of pairwise uncorrelated random variables each with variance 1. - Liam Patrick Roche, Jun 04 2015

Number of ordered trees with n edges where vertices at level 1 can be of 2 colors. Indeed, the standard decomposition of ordered trees leading to the equation C = 1 + zC^2 (C is the Catalan function), yields this time G = 1 + 2zCG, from where G = 1/sqrt(1-4z). - Emeric Deutsch, Jun 17 2015

Number of monomials of degree at most n in n variables. - Ran Pan, Sep 26 2015

Let V(n, r) denote the volume of an n-dimensional sphere with radius r, then V(n, 2^n) / Pi = V(n-1, 2^n) * a(n/2) for all even n. - Peter Luschny, Oct 12 2015

a(n) is the number of sets {i1,...,in} of length n such that n >= i1 >= i2 >= ... >= in >= 0. For instance, a(2) = 6 as there are only 6 such sets: (2,2) (2,1) (2,0) (1,1) (1,0) (0,0). - Anton Zakharov, Jul 04 2016

From Ralf Steiner, Apr 07 2017: (Start)

By analytic continuation to the entire complex plane there exist regularized values for divergent sums such as:

Sum_{k>=0} a(k)/(-2)^k = 1/sqrt(3).

Sum_{k>=0} a(k)/(-1)^k = 1/sqrt(5).

Sum_{k>=0} a(k)/(-1/2)^k = 1/3.

Sum_{k>=0} a(k)/(1/2)^k = -1/sqrt(7)i.

Sum_{k>=0} a(k)/(1)^k = -1/sqrt(3)i.

Sum_{k>=0} a(k)/2^k  = -i. (End)

Number of sequences (e(1), ..., e(n+1)), 0 <= e(i) < i, such that there is no triple i < j < k with e(i) > e(j). [Martinez and Savage, 2.18] - Eric M. Schmidt, Jul 17 2017

The o.g.f. for the sequence equals the diagonal of any of the following the rational functions: 1/(1 - (x + y)), 1/(1 - (x + y*z)), 1/(1 - (x + x*y + y*z)) or 1/(1 - (x + y + y*z)). - Peter Bala, Jan 30 2018

From Colin Defant, Sep 16 2018: (Start)

Let s denote West's stack-sorting map. a(n) is the number of permutations pi of [n+1] such that s(pi) avoids the patterns 132, 231, and 321. a(n) is also the number of permutations pi of [n+1] such that s(pi) avoids the patterns 132, 312, and 321.

a(n) is the number of permutations of [n+1] that avoid the patterns 1342, 3142, 3412, and 3421. (End)

All binary self-dual codes of length 4n, for n>0, must contain at least a(n) codewords of weight 2n.  More to the point, there will always be at least one, perhaps unique, binary self-dual code of length 4n that will contain exactly a(n) codewords that have a hamming weight equal to half the length of the code (2n). This code can be constructed by direct summing the unique binary self-dual code of length 2 (up to permutation equivalence) to itself an even number of times. A permutation equivalent code can be constructed by augmenting two identity matrices of length 2n together. - Nathan J. Russell, Nov 25 2018

From Isaac Saffold, Dec 28 2018: (Start)

Let [b/p] denote the Legendre symbol and 1/b denote the inverse of b mod p. Then, for m and n, where n is not divisible by p,

[(m+n)/p] == [n/p]*Sum_{k=0..(p-1)/2} (-m/(4*n))^k * a(k) (mod p).

Evaluating this identity for m = -1 and n = 1 demonstrates that, for all odd primes p, Sum_{k=0..(p-1)/2} (1/4)^k * a(k) is divisible by p. (End)

Number of vertices of the subgraph of the (2n-1)-dimensional hypercube induced by all bitstrings with n-1 or n many 1s. The middle levels conjecture asserts that this graph has a Hamilton cycle. - Torsten Muetze, Feb 11 2019

a(n) is the number of walks of length 2n from the origin with steps (1,1) and (1,-1) that stay on or above the x-axis. Equivalently, a(n) is the number of walks of length 2n from the origin with steps (1,0) and (0,1) that stay in the first octant. - Alexander Burstein, Dec 24 2019

Number of permutations of length n>0 avoiding the partially ordered pattern (POP) {3>1, 1>2} of length 4. That is, number of length n permutations having no subsequences of length 4 in which the first element is larger than the second element but smaller than the third elements. - Sergey Kitaev, Dec 08 2020


M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 828.

A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 160.

Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 575, line -3, with a=b=n.

E. Deutsch and L. Shapiro, Seventeen Catalan identities, Bulletin of the Institute of Combinatorics and its Applications, 31, 31-38, 2001.

H. W. Gould, Combinatorial Identities, Morgantown, 1972, (3.66), page 30.

R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, Second Ed., see Exercise 112.

M. Griffiths, The Backbone of Pascal's Triangle, United Kingdom Mathematics Trust (2008), 3-124.

Leonard Lipshitz and A. van der Poorten. "Rational functions, diagonals, automata and arithmetic." In Number Theory, Richard A. Mollin, ed., Walter de Gruyter, Berlin (1990): 339-358.

J. C. P. Miller, editor, Table of Binomial Coefficients. Royal Society Mathematical Tables, Vol. 3, Cambridge Univ. Press, 1954.

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).


T. D. Noe and Edward Jiang, Table of n, a(n) for n = 0..500 (Previously 0..200 by T. D. Noe)

J. Abate, W. Whitt, Brownian Motion and the Generalized Catalan Numbers, J. Int. Seq.  14 (2011) # 11.2.6, example section 3.

M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].

M. Abrate, S. Barbero, U. Cerruti, N. Murru, Fixed Sequences for a Generalization of the Binomial Interpolated Operator and for some Other Operators, J. Int. Seq. 14 (2011) # 11.8.1.

B Adamczewski, JP Bell, E Delaygue, Algebraic independence of G-functions and congruences "a la Lucas", arXiv preprint arXiv:1603.04187 [math.NT], 2016.

M. Aigner, Enumeration via ballot numbers, Discrete Math., 308 (2008), 2544-2563.

Michael Anshelevich, Product formulas on posets, Wick products, and a correction for the q-Poisson process, arXiv:1708.08034 [math.OA], 2017, See Proposition 34 p. 25.

D. H. Bailey, J. M. Borwein and D. M. Bradley, Experimental determination of Apéry-like identities for zeta(4n+2), arXiv:math/0505124 [math.CA], 2005.

Paul Barry, A Catalan Transform and Related Transformations on Integer Sequences, Journal of Integer Sequences, Vol. 8 (2005), Article 05.4.5.

Paul Barry, On Integer-Sequence-Based Constructions of Generalized Pascal Triangles, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.4.

Paul Barry, Riordan-Bernstein Polynomials, Hankel Transforms and Somos Sequences, Journal of Integer Sequences, Vol. 15 2012, #12.8.2.

Paul Barry, On the Central Coefficients of Riordan Matrices, Journal of Integer Sequences, 16 (2013), #13.5.1.

Paul Barry, A Note on a Family of Generalized Pascal Matrices Defined by Riordan Arrays, Journal of Integer Sequences, 16 (2013), #13.5.4.

Paul Barry, The Central Coefficients of a Family of Pascal-like Triangles and Colored Lattice Paths, J. Int. Seq., Vol. 22 (2019), Article 19.1.3.

Paul Barry, Generalized Catalan Numbers Associated with a Family of Pascal-like Triangles, J. Int. Seq., Vol. 22 (2019), Article 19.5.8.

Paul Barry, On the Central Antecedents of Integer (and Other) Sequences, J. Int. Seq., Vol. 23 (2020), Article 20.8.3.

Paul Barry and Aoife Hennessy, Generalized Narayana Polynomials, Riordan Arrays, and Lattice Paths, Journal of Integer Sequences, Vol. 15, 2012, #12.4.8.

P. Barry, On the Connection Coefficients of the Chebyshev-Boubaker polynomials, The Scientific World Journal, Volume 2013 (2013), Article ID 657806, 10 pages.

A. Bernini, F. Disanto, R. Pinzani and S. Rinaldi, Permutations defining convex permutominoes, J. Int. Seq. 10 (2007) # 07.9.7.

Robert J. Betts, Lack of Divisibility of {2N choose N} by three fixed odd primes infinitely often, through the Extension of a Result by P. Erdős, et al., arXiv:1010.3070 [math.NT], 2010. [It is not clear if the results in this paper have been confirmed. There appears to be no mention of this work in MathSciNet, for example. - N. J. A. Sloane, Oct 29 2015]

J. Borwein and D. Bradley, Empirically determined Apéry-like formulas for zeta(4n+3), arXiv:math/0505124 [math.CA], 2005.

Jonathan M. Borwein, Dirk Nuyens, Armin Straub and James Wan, Random Walk Integrals, 2010.

Jonathan M. Borwein and Armin Straub, Mahler measures, short walks and log-sine integrals.

H. J. Brothers, Pascal's Prism: Supplementary Material.

Marie-Louise Bruner, Central binomial coefficients also count (2431,4231,1432,4132)-avoiders, arXiv:1505.04929 [math.CO], 2015.

Kevin Buchin, Man-Kwun Chiu, Stefan Felsner, Günter Rote, André Schulz, The Number of Convex Polyominoes with Given Height and Width, arXiv:1903.01095 [math.CO], 2019.

N. T. Cameron, Random walks, trees and extensions of Riordan group techniques, Dissertation, Howard University, 2002.

G. Chatel, V. Pilaud, The Cambrian and Baxter-Cambrian Hopf Algebras, arXiv preprint arXiv:1411.3704 [math.CO], 2014-2015.

Hongwei Chen, Evaluations of Some Variant Euler Sums, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.3.

G.-S. Cheon, H. Kim, L. W. Shapiro, Mutation effects in ordered trees, arXiv preprint arXiv:1410.1249 [math.CO], 2014.

J. Cigler, Some nice Hankel determinants, arXiv:1109.1449 [math.CO], 2011.

Johann Cigler, Christian Krattenthaler, Hankel determinants of linear combinations of moments of orthogonal polynomials, arXiv:2003.01676 [math.CO], 2020.

CombOS - Combinatorial Object Server, Generate middle levels Gray codes

B. N. Cooperstein and E. E. Shult, A note on embedding and generating dual polar spaces. Adv. Geom. 1 (2001), 37-48. See Theorem 5.4.

Kristina Crona, Mengming Luo, Devin Greene, An Uncertainty Law for Microbial Evolution, Journal of Theoretical Biology (2020) Vol. 489, Article No. 110155.

D. Daly and L. Pudwell, Pattern avoidance in rook monoids, 2013.

Colin Defant, Stack-sorting preimages of permutation classes, arXiv:1809.03123 [math.CO], 2018.

Dennis E. Davenport, Lara K. Pudwell, Louis W. Shapiro, Leon C. Woodson, The Boundary of Ordered Trees, Journal of Integer Sequences, Vol. 18 (2015), Article 15.5.8.

Thierry Dana-Picard, Sequences of Definite Integrals, Factorials and Double Factorials, Journal of Integer Sequences, Vol. 8 (2005), Article 05.4.6.

Isaac DeJager, Madeleine Naquin, Frank Seidl, Colored Motzkin Paths of Higher Order, VERUM 2019.

E. Delaygue, Arithmetic properties of Apéry-like numbers, arXiv preprint arXiv:1310.4131 [math.NT], 2013.

Nachum Dershowitz, Touchard's Drunkard, Journal of Integer Sequences, Vol. 20 (2017), #17.1.5.

E. Deutsch, Enumerating symmetric directed convex polyominoes, Discrete Math., 280 (2004), 225-231.

Satyan L. Devadoss, A realization of graph associahedra, Discrete Math. 309 (2009), no. 1, 271-276.

J. C. F. de Winter, Using the Student's t-test with extremely small sample sizes, Practical Assessment, Research & Evaluation, 18(10), 2013.

R. M. Dickau, Shortest-path diagrams

Phan Thuan Do, Thi Thu Huong Tran, Vincent Vajnovszki, Exhaustive generation for permutations avoiding a (colored) regular sets of patterns, arXiv:1809.00742 [cs.DM], 2018.

R. Duarte and A. G. de Oliveira, Short note on the convolution of binomial coefficients, arXiv preprint arXiv:1302.2100 [math.CO], 2013 and J. Int. Seq. 16 (2013) #13.7.6.

Bryan Ek, Unimodal Polynomials and Lattice Walk Enumeration with Experimental Mathematics, arXiv:1804.05933 [math.CO], 2018.

P. Erdős, R. L. Graham, I. Z. Russa and E. G. Straus, On the prime factors of C(2n,n), Math. Comp. 29 (1975), 83-92.

Gennady Eremin, Factoring Middle Binomial Coefficients, arXiv:2003.01494 [math.CO], 2020.

A. Erickson and F. Ruskey, Enumerating maximal tatami mat coverings of square grids with v vertical dominoes, arXiv preprint arXiv:1304.0070 [math.CO], 2013.

Luca Ferrari and Emanuele Munarini, Enumeration of edges in some lattices of paths, arXiv preprint arXiv:1203.6792 [math.CO], 2012 and J. Int. Seq. 17 (2014) #14.1.5.

Francesc Fité and Andrew V. Sutherland, Sato-Tate distributions of twists of y^2= x^5-x and y^2= x^6+1, arXiv preprint arXiv:1203.1476 [math.NT], 2012.

Francesc Fité, Kiran S. Kedlaya, Victor Rotger and Andrew V. Sutherland, Sato-Tate distributions and Galois endomorphism modules in genus 2, arXiv:1110.6638 [math.NT], 2011.

P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009; see page 77.

Alice L. L. Gao, Sergey Kitaev, On partially ordered patterns of length 4 and 5 in permutations, arXiv:1903.08946 [math.CO], 2019.

Alice L. L. Gao, Sergey Kitaev, On partially ordered patterns of length 4 and 5 in permutations, The Electronic Journal of Combinatorics 26(3) (2019), P3.26.

Joël Gay, Vincent Pilaud, The weak order on Weyl posets, arXiv:1804.06572 [math.CO], 2018.

H. W. Gould, Tables of Combinatorial Identities, Vol. 7, Edited by J. Quaintance.

A. Granville and O. Ramaré, Explicit bounds on exponential sums and the scarcity of squarefree binomial coefficients, Mathematika 43 (1996), 73-107, [DOI].

T. Halverson and M. Reeks, Gelfand Models for Diagram Algebras, arXiv preprint arXiv:1302.6150 [math.RT], 2013.

Oktay Haracci (timetunnel3(AT)hotmail.com), Regular Polygons

R. H. Hardin, Binary arrays with both rows and cols sorted, symmetries

P.-Y. Huang, S.-C. Liu, Y.-N. Yeh, Congruences of Finite Summations of the Coefficients in certain Generating Functions, The Electronic Journal of Combinatorics, 21 (2014), #P2.45.

W. Cary Huffman and Vera Pless, Fundamentals of Error Correcting Codes, Cambridge University Press, 2003, Pages 7,252-282,338-393.

Anders Hyllengren, Four integer sequences, Oct 04 1985. Observes essentially that A000984 and A002426 are inverse binomial transforms of each other, as are A000108 and A001006.

Milan Janjic, Two Enumerative Functions

I. Jensen, Series expansions for self-avoiding polygons

C. Kimberling, Matrix Transformations of Integer Sequences, J. Integer Seqs., Vol. 6, 2003.

Sergey Kitaev and Jeffrey Remmel, Simple marked mesh patterns, arXiv preprint arXiv:1201.1323 [math.CO], 2012.

V. V. Kruchinin and D. V. Kruchinin, A Method for Obtaining Generating Function for Central Coefficients of Triangles, arXiv:1206.0877 [math.CO], 2012.

D. Kruchinin and V. Kruchinin, A Method for Obtaining Generating Function for Central Coefficients of Triangles, Journal of Integer Sequence,  Vol. 15 (2012), article 12.9.3.

Jean-Philippe Labbé, Carsten Lange, Cambrian acyclic domains: counting c-singletons, arXiv:1802.07978 [math.CO], 2018.

Marie-Louise Lackner, M. Wallner, An invitation to analytic combinatorics and lattice path counting; Preprint, Dec 2015.

C. Lanczos, Applied Analysis (Annotated scans of selected pages)

J. W. Layman, The Hankel Transform and Some of its Properties, J. Integer Sequences, 4 (2001), #01.1.5.

D. H. Lehmer, Interesting series involving the Central Binomial Coefficient, Am. Math. Monthly 92, no 7 (1985) 449-457.

Huyile Liang, Jeffrey Remmel, Sainan Zheng, Stieltjes moment sequences of polynomials, arXiv:1710.05795 [math.CO], 2017, see page 19.

L. Lipshitz and A. J. van der Poorten, Rational functions, diagonals, automata and arithmetic

T. Manneville, V. Pilaud, Compatibility fans for graphical nested complexes, arXiv preprint arXiv:1501.07152 [math.CO], 2015.

Megan A. Martinez and Carla D. Savage, Patterns in Inversion Sequences II: Inversion Sequences Avoiding Triples of Relations, arXiv:1609.08106 [math.CO], 2016.

MathOverflow, Divisibility of a binomial coefficient by p^2 — current status

R. Mestrovic, Wolstenholme's theorem: Its Generalizations and Extensions in the last hundred and fifty years (1862-2011), arXiv preprint arXiv:1111.3057 [math.NT], 2011.

R. Mestrovic, Lucas' theorem: its generalizations, extensions and applications (1878--2014), arXiv preprint arXiv:1409.3820 [math.NT], 2014.

W. Mlotkowski and K. A. Penson, Probability distributions with binomial moments, arXiv preprint arXiv:1309.0595 [math.PR], 2013.

T. Motzkin, The hypersurface cross ratio, Bull. Amer. Math. Soc., 51 (1945), 976-984.

T. S. Motzkin, Relations between hypersurface cross ratios and a combinatorial formula for partitions of a polygon, for permanent preponderance and for non-associative products, Bull. Amer. Math. Soc., 54 (1948), 352-360.

Torsten Mütze, Proof of the middle levels conjecture, arXiv preprint arXiv:1404.4442 [math.CO], 2014.

Asamoah Nkwanta and Earl R. Barnes, Two Catalan-type Riordan Arrays and their Connections to the Chebyshev Polynomials of the First Kind, Journal of Integer Sequences, Article 12.3.3, 2012. - From N. J. A. Sloane, Sep 16 2012

Tony D. Noe, On the Divisibility of Generalized Central Trinomial Coefficients, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.7.

Ran Pan, Exercise I, Project P.

P. Peart and W.-J. Woan, Generating Functions via Hankel and Stieltjes Matrices, J. Integer Seqs., Vol. 3 (2000), #00.2.1.

A. Petojevic and N. Dapic, The vAm(a,b,c;z) function, Preprint 2013.

C. Pomerance, Divisors of the middle binomial coefficient, Amer. Math. Monthly, 112 (2015), 636-644.

Y. Puri and T. Ward, Arithmetic and growth of periodic orbits, J. Integer Seqs., Vol. 4 (2001), #01.2.1.

Franck Ramaharo, A generating polynomial for the pretzel knot, arXiv:1805.10680 [math.CO], 2018.

T. M. Richardson, The Reciprocal Pascal Matrix, arXiv preprint arXiv:1405.6315 [math.CO], 2014.

John Riordan, Letter to N. J. A. Sloane, Sep 26 1980 with notes on the 1973 Handbook of Integer Sequences. Note that the sequences are identified by their N-numbers, not their A-numbers.

D. P. Roberts, A. Venkatesh, Hurwitz monodromy and full number fields, 2014. Also arXiv:1401:7379, 2014.

H. P. Robinson, Letter to N. J. A. Sloane, Oct 1981

A. Sárközy, On Divisors of Binomial Coefficients. I., J. Number Th. 20, 70-80, 1985.

J. Ser, Les Calculs Formels des Séries de Factorielles (Annotated scans of some selected pages)

L. W. Shapiro, S. Getu, Wen-Jin Woan and L. C. Woodson, The Riordan Group, Discrete Appl. Maths. 34 (1991) 229-239.

N. J. A. Sloane, Notes on A984 and A2420-A2424

Michael Z. Spivey and Laura L. Steil, The k-Binomial Transforms and the Hankel Transform, Journal of Integer Sequences, Vol. 9 (2006), Article 06.1.1.

Armin Straub, Arithmetic aspects of random walks and methods in definite integration, Ph. D. Dissertation, School Of Science And Engineering, Tulane University, 2012.

Armin Straub, Tewodros Amdeberhan and Victor H. Moll, The p-adic valuation of k-central binomial coefficients, arXiv:0811.2028 [math.NT], 2008, pp. 10-11.

V. Strehl, Recurrences and Legendre transform, Séminaire Lotharingien de Combinatoire, B29b (1992), 22 pp.

R. A. Sulanke, Moments of generalized Motzkin paths, J. Integer Sequences, Vol. 3 (2000), #00.1.

Hua Sun, Yi Wang, A Combinatorial Proof of the Log-Convexity of Catalan-Like Numbers, J. Int. Seq. 17 (2014) # 14.5.2.

Michael Torpey, Semigroup congruences: computational techniques and theoretical applications, Ph.D. Thesis, University of St. Andrews (Scotland, 2019).

H. A. Verrill, Sums of squares of binomial coefficients, ..., arXiv:math/0407327 [math.CO], 2004.

M. Wallner, Lattice Path Combinatorics, Diplomarbeit, Institut für Diskrete Mathematik und Geometrie der Technischen Universität Wien, 2013.

Eric Weisstein's World of Mathematics, Binomial Sums

Eric Weisstein's World of Mathematics, Central Binomial Coefficient

Eric Weisstein's World of Mathematics, Staircase Walk

Eric Weisstein's World of Mathematics, Circle Line Picking

Index entries for "core" sequences


a(n)/(n+1) = A000108(n), the Catalan numbers.

G.f.: A(x) = (1 - 4*x)^(-1/2) = 1F0(1/2;;4x).

a(n+1) = 2*A001700(n) = A030662(n) + 1. a(2*n) = A001448(n), a(2*n+1) = 2*A002458(n).

D-finite with recurrence: n*a(n) + 2*(1-2*n)*a(n-1)=0.

a(n) = 2^n/n! * Product_{k=0..n-1} (2*k+1).

a(n) = a(n-1)*(4-2/n) = Product_{k=1..n} (4-2/k) = 4*a(n-1) + A002420(n) = A000142(2*n)/(A000142(n)^2) = A001813(n)/A000142(n) = sqrt(A002894(n)) = A010050(n)/A001044(n) = (n+1)*A000108(n) = -A005408(n-1)*A002420(n). - Henry Bottomley, Nov 10 2000

Using Stirling's formula in A000142 it is easy to get the asymptotic expression a(n) ~ 4^n / sqrt(Pi * n). - Dan Fux (dan.fux(AT)OpenGaia.com or danfux(AT)OpenGaia.com), Apr 07 2001

Integral representation as n-th moment of a positive function on the interval[0, 4], in Maple notation: a(n) =  Integral_{x=0..4}(x^n*((x*(4-x))^(-1/2))/Pi), n=0, 1, ... This representation is unique. - Karol A. Penson, Sep 17 2001

Sum_{n>=1} 1/a(n) = (2*Pi*sqrt(3) + 9)/27. [Lehmer 1985, eq. (15)] - Benoit Cloitre, May 01 2002

a(n) = Max_{ (i+j)!/(i!j!) | 0<=i,j<=n }. - Benoit Cloitre, May 30 2002

E.g.f.: exp(2*x)*I_0(2x), where I_0 is Bessel function. - Michael Somos, Sep 08 2002

E.g.f.: I_0(2*x) = Sum a(n)*x^(2*n)/(2*n)!, where I_0 is Bessel function. - Michael Somos, Sep 09 2002

a(n) = Sum_{k=0..n} binomial(n, k)^2. - Benoit Cloitre, Jan 31 2003

Determinant of n X n matrix M(i, j) = binomial(n+i, j). - Benoit Cloitre, Aug 28 2003

Given m = C(2*n, n), let f be the inverse function, so that f(m) = n. Letting q denote -log(log(16)/(m^2*Pi)), we have f(m) = ceiling( (q + log(q)) / log(16) ). - David W. Cantrell (DWCantrell(AT)sigmaxi.net), Oct 30 2003

a(n) = 2*Sum_{k=0..(n-1)} a(k)*a(n-k+1)/(k+1). - Philippe Deléham, Jan 01 2004

a(n+1) = Sum_{j=n..n*2+1} binomial(j, n). E.g., a(4) = C(7,3) + C(6,3) + C(5,3) + C(4,3) + C(3,3) = 35 + 20 + 10 + 4 + 1 = 70. - Jon Perry, Jan 20 2004

a(n) = (-1)^(n)*Sum_{j=0..(2*n)} (-1)^j*binomial(2*n, j)^2. - Helena Verrill (verrill(AT)math.lsu.edu), Jul 12 2004

a(n) = Sum_{k=0..n} binomial(2n+1, k)*sin((2n-2k+1)*Pi/2). - Paul Barry, Nov 02 2004

a(n-1) = (1/2)*(-1)^n*Sum_{0<=i, j<=n}(-1)^(i+j)*binomial(2n, i+j). - Benoit Cloitre, Jun 18 2005

a(n) = C(2n, n-1) + C(n) = A001791(n) + A000108(n). - Lekraj Beedassy, Aug 02 2005

G.f.: c(x)^2/(2*c(x)-c(x)^2) where c(x) is the g.f. of A000108. - Paul Barry, Feb 03 2006

a(n) = A006480(n) / A005809(n). - Zerinvary Lajos, Jun 28 2007

a(n) = Sum_{k=0..n} A106566(n,k)*2^k. - Philippe Deléham, Aug 25 2007

a(n) = Sum_{k>=0} A039599(n, k). a(n) = Sum_{k>=0} A050165(n, k). a(n) = Sum_{k>=0} A059365(n, k)*2^k, n>0. a(n+1) = Sum_{k>=0} A009766(n, k)*2^(n-k+1). - Philippe Deléham, Jan 01 2004

a(n) = 4^n*Sum_{k=0..n} C(n,k)(-4)^(-k)*A000108(n+k). - Paul Barry, Oct 18 2007

Row sums of triangle A135091. - Gary W. Adamson, Nov 18 2007

a(n) = Sum_{k=0..n} A039598(n,k)*A059841(k). - Philippe Deléham, Nov 12 2008

A007814(a(n)) = A000120(n). - Vladimir Shevelev, Jul 20 2009

From Paul Barry, Aug 05 2009: (Start)

G.f.: 1/(1-2x-2x^2/(1-2x-x^2/(1-2x-x^2/(1-2x-x^2/(1-... (continued fraction);

G.f.: 1/(1-2x/(1-x/(1-x/(1-x/(1-... (continued fraction). (End)

If n>=3 is prime, then a(n)==2(mod 2*n). - Vladimir Shevelev, Sep 05 2010

Let A(x) be the g.f. and B(x) = A(-x), then B(x) = sqrt(1-4*x*B(x)^2). - Vladimir Kruchinin, Jan 16 2011

a(n) = (-4)^n*sqrt(Pi)/(gamma((1/2-n))*gamma(1+n)). - Gerry Martens, May 03 2011

a(n) = upper left term in M^n, M = the infinite square production matrix:

2, 2, 0, 0, 0, 0, ...

1, 1, 1, 0, 0, 0, ...

1, 1, 1, 1, 0, 0, ...

1, 1, 1, 1, 1, 0, ...

1, 1, 1, 1, 1, 1, ....

- Gary W. Adamson, Jul 14 2011

a(n) = Hypergeometric([-n,-n],[1],1). - Peter Luschny, Nov 01 2011

E.g.f.: hypergeometric([1/2],[1],4*x). - Wolfdieter Lang, Jan 13 2012

a(n) = 2*Sum_{k=0..n-1} a(k)*A000108(n-k-1). - Alzhekeyev Ascar M, Mar 09 2012

G.f.: 1 + 2*x/(U(0)-2*x) where U(k) = 2*(2*k+1)*x + (k+1) - 2*(k+1)*(2*k+3)*x/U(k+1); (continued fraction, Euler's 1st kind, 1-step). - Sergei N. Gladkovskii, Jun 28 2012

a(n) = Sum_{k=0..n} binomial(n,k)^2*H(k)/(2*H(n)-H(2*n)), n>0, where H(n) is the n-th harmonic number. - Gary Detlefs, Mar 19 2013

G.f.: Q(0)*(1-4*x), where Q(k)= 1 + 4*(2*k+1)*x/( 1 - 1/(1 + 2*(k+1)/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 11 2013

G.f.: G(0)/2, where G(k)= 1 + 1/(1 - 2*x*(2*k+1)/(2*x*(2*k+1) + (k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 24 2013

E.g.f.: E(0)/2, where E(k)= 1 + 1/(1 - 2*x/(2*x + (k+1)^2/(2*k+1)/E(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 01 2013

Special values of Jacobi polynomials, in Maple notation: a(n) = 4^n*JacobiP(n,0,-1/2-n,-1). - Karol A. Penson, Jul 27 2013

a(n) = 2^(4*n)/((2*n+1)*Sum_{k=0..n} (-1)^k*C(2*n+1,n-k)/(2*k+1)). - Mircea Merca, Nov 12 2013

a(n) = C(2*n-1,n-1)*C(4*n^2,2)/(3*n*C(2*n+1,3)), n>0. - Gary Detlefs, Jan 02 2014

Sum_{n>=0} a(n)/n! = A234846. - Richard R. Forberg, Feb 10 2014

0 =  a(n)*(16*a(n+1) - 6*a(n+2)) + a(n+1)*(-2*a(n+1) + a(n+2)) for all n in Z. - Michael Somos, Sep 17 2014

a(n+1) = 4*a(n) - 2*A000108(n). Also a(n) = 4^n*Product_{k=1..n}(1-1/(2*k)). - Stanislav Sykora, Aug 09 2014

G.f.: Sum_{n>=0} x^n/(1-x)^(2*n+1) * Sum_{k=0..n} C(n,k)^2 * x^k. - Paul D. Hanna, Nov 08 2014

a(n) = (-4)^n*binomial(-1/2,n). - Jean-François Alcover, Feb 10 2015

a(n) = 4^n*hypergeom([-n,1/2],[1],1). - Peter Luschny, May 19 2015

a(n) = Sum_{k=0..floor(n/2)} C(n,k)*C(n-k,k)*2^(n-2*k). - Robert FERREOL, Aug 29 2015

a(n) ~ 4^n*(2-2/(8*n+2)^2+21/(8*n+2)^4-671/(8*n+2)^6+45081/(8*n+2)^8)/sqrt((4*n+1) *Pi). - Peter Luschny, Oct 14 2015

A(-x) = 1/x * series reversion( x*(2*x + sqrt(1 + 4*x^2)) ). Compare with the o.g.f. B(x) of A098616, which satisfies B(-x) = 1/x * series reversion( x*(2*x + sqrt(1 - 4*x^2) ). See also A214377. - Peter Bala, Oct 19 2015

a(n) = GegenbauerC(n,-n,-1). - Peter Luschny, May 07 2016

a(n) = gamma(1+2*n)/gamma(1+n)^2. - Andres Cicuttin, May 30 2016

Sum_{n>=0} (-1)^n/a(n) = 4*(5 - sqrt(5)*log(phi))/25 = 0.6278364236143983844442267..., where phi is the golden ratio. - Ilya Gutkovskiy, Jul 04 2016

From Peter Bala, Jul 22 2016: (Start)

This sequence occurs as the closed-form expression for several binomial sums:

a(n) = Sum_{k = 0..2*n} (-1)^(n+k)*binomial(2*n,k)*binomial(2*n + 1,k).

a(n) = 2*Sum_{k = 0..2*n-1} (-1)^(n+k)*binomial(2*n - 1,k)*binomial(2*n,k) for n >= 1.

a(n) = 2*Sum_{k = 0..n-1} binomial(n - 1,k)*binomial(n,k) for n >= 1.

a(n) = Sum_{k = 0..2*n} (-1)^k*binomial(2*n,k)*binomial(x + k,n)*binomial(y + k,n) = Sum_{k = 0..2*n} (-1)^k*binomial(2*n,k)*binomial(x - k,n)*binomial(y - k,n) for arbitrary x and y.

For m = 3,4,5,... both Sum_{k = 0..m*n} (-1)^k*binomial(m*n,k)*binomial(x + k,n)*binomial(y + k,n) and Sum_{k = 0..m*n} (-1)^k*binomial(m*n,k)*binomial(x - k,n)*binomial(y - k,n) appear to equal Kronecker's delta(n,0).

a(n) = (-1)^n*Sum_{k = 0..2*n} (-1)^k*binomial(2*n,k)*binomial(x + k,n)*binomial(y - k,n) for arbitrary x and y.

For m = 3,4,5,... Sum_{k = 0..m*n} (-1)^k*binomial(m*n,k)*binomial(x + k,n)*binomial(y - k,n) appears to equal Kronecker's delta(n,0).

a(n) = Sum_{k = 0..2n} (-1)^k*binomial(2*n,k)*binomial(3*n - k,n)^2 = Sum_{k = 0..2*n} (-1)^k*binomial(2*n,k)* binomial(n + k,n)^2. (Gould, Vol. 7, 5.23).

a(n) = Sum_{k = 0..n} (-1)^(n+k)*binomial(2*n,n + k)*binomial(n + k,n)^2. (End)

From Ralf Steiner, Apr 07 2017: (Start)

Sum_{k>=0} a(k)/(p/q)^k = sqrt(p/(p-4q)) for q in N, p in Z/{-4q< (some p) <-2}.


Sum_{k>=0} a(k)/(-4)^k = 1/sqrt(2).

Sum_{k>=0} a(k)/(17/4)^k = sqrt(17).

Sum_{k>=0} a(k)/(18/4)^k = 3.

Sum_{k>=0} a(k)/5^k = sqrt(5).

Sum_{k>=0} a(k)/6^k = sqrt(3).

Sum_{k>=0} a(k)/8^k = sqrt(2).


Sum_{k>=0} a(k)/(p/q)^k = sqrt(p/(p-4q)) for p>4q.(End)

Boas-Buck recurrence: a(n) = (2/n)*Sum_{k=0..n-1} 4^(n-k-1)*a(k), n >= 1, a(0) = 1. Proof from a(n) = A046521(n, 0). See a comment there. - Wolfdieter Lang, Aug 10 2017

a(n) = Sum_{k = 0..n} (-1)^k * binomial(2*n+1, k) for n in N. - Rene Adad, Sep 30 2017

a(n) = A034870(n,n). - Franck Maminirina Ramaharo, Nov 26 2018


G.f.: 1 + 2*x + 6*x^2 + 20*x^3 + 70*x^4 + 252*x^5 + 924*x^6 + ...

For n=2, a(2) = 4!/(2!)^2 = 24/4 = 6, and this is the middle coefficient of the binomial expansion (a + b)^4 = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4. - Michael B. Porter, Jul 06 2016


A000984 := n-> binomial(2*n, n); seq(A000984(n), n=0..30);

with(combstruct); [seq(count([S, {S=Prod(Set(Z, card=i), Set(Z, card=i))}, labeled], size=(2*i)), i=0..20)];

with(combstruct); [seq(count([S, {S=Sequence(Union(Arch, Arch)), Arch=Prod(Epsilon, Sequence(Arch), Z)}, unlabeled], size=i), i=0..25)];

Z:=(1-sqrt(1-z))*4^n/sqrt(1-z): Zser:=series(Z, z=0, 32): seq(coeff(Zser, z, n), n=0..24); # Zerinvary Lajos, Jan 01 2007

with(combstruct):bin := {B=Union(Z, Prod(B, B))}: seq (count([B, bin, unlabeled], size=n)*n, n=1..25); # Zerinvary Lajos, Dec 05 2007


Table[Binomial[2n, n], {n, 0, 24}] (* Alonso del Arte, Nov 10 2005 *)

CoefficientList[Series[1/Sqrt[1-4x], {x, 0, 25}], x]  (* Harvey P. Dale, Mar 14 2011 *)


(MAGMA) a:= func< n | Binomial(2*n, n) >; [ a(n) : n in [0..10]];

(PARI) A000984(n)=binomial(2*n, n) \\ much more efficient than (2n)!/n!^2. \\ M. F. Hasler, Feb 26 2014

(PARI) fv(n, p)=my(s); while(n\=p, s+=n); s

a(n)=prodeuler(p=2, 2*n, p^(fv(2*n, p)-2*fv(n, p))) \\ Charles R Greathouse IV, Aug 21 2013

(PARI) fv(n, p)=my(s); while(n\=p, s+=n); s

a(n)=my(s=1); forprime(p=2, 2*n, s*=p^(fv(2*n, p)-2*fv(n, p))); s \\ Charles R Greathouse IV, Aug 21 2013


a000984 n = a007318_row (2*n) !! n  -- Reinhard Zumkeller, Nov 09 2011

(Maxima) A000984(n):=(2*n)!/(n!)^2$ makelist(A000984(n), n, 0, 30); /* Martin Ettl, Oct 22 2012 */


from __future__ import division

A000984_list, b = [1], 1

for n in range(10**3):

    b = b*(4*n+2)//(n+1)

    A000984_list.append(b) # Chai Wah Wu, Mar 04 2016

(GAP) List([1..1000], n -> Binomial(2*n, n)); # Muniru A Asiru, Jan 30 2018


Cf. A000108, A002420, A002457, A030662, A002144, A135091, A152229, A158815, A081696, A205946, A182400. Differs from A071976 at 10th term.

Bisection of A001405 and of A226302. See also A025565, the same ordered partitions but without all in which are two successive zeros: 11110 (5), 11200 (18), 13000 (2), 40000 (0) and 22000 (1), total 26 and A025565(4)=26.

Cf. A226078, A051924 (first differences).

Row sums of A059481, A008459, A152229, A158815, A205946.

Cf. A258290 (arithmetic derivative). Cf. A098616, A214377.

See A261009 for a conjecture about this sequence.

Cf. A046521 (first column).

The Apéry-like numbers [or Apéry-like sequences, Apery-like numbers, Apery-like sequences] include A000172, A000984, A002893, A002895, A005258, A005259, A005260, A006077, A036917, A063007, A081085, A093388, A125143 (apart from signs), A143003, A143007, A143413, A143414, A143415, A143583, A183204, A214262, A219692,A226535, A227216, A227454, A229111 (apart from signs), A260667, A260832, A262177, A264541, A264542, A279619, A290575, A290576. (The term "Apery-like" is not well-defined.)

Sequence in context: A302645 A071976 A302646 * A087433 A119373 A151284

Adjacent sequences:  A000981 A000982 A000983 * A000985 A000986 A000987




N. J. A. Sloane



Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 1 11:52 EST 2021. Contains 341736 sequences. (Running on oeis4.)