|
|
A264541
|
|
a(n) = numerator(Jtilde3(n)).
|
|
35
|
|
|
0, 1, 65, 13247, 704707, 660278641, 357852111131, 309349386395887, 240498440880062263, 148443546307725010253, 61760947097005048531, 13658972396318235617977, 723464275788899734058353751, 489812222050789870424202126629, 2614176630672654770175367214389, 204702102697072009862200307064701369
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
Jtilde3(n) are Apéry-like rational numbers that arise in the calculation of zetaQ(3), the spectral zeta function for the non-commutative harmonic oscillator using a Gaussian hypergeometric function.
|
|
LINKS
|
G. C. Greubel, Table of n, a(n) for n = 0..345
Takashi Ichinose, Masato Wakayama, Special values of the spectral zeta function of the non-commutative harmonic oscillator and confluent Heun equations, Kyushu Journal of Mathematics, Vol. 59 (2005) No. 1 p. 39-100.
Kazufumi Kimoto, Masato Wakayama, Apéry-like numbers arising from special values of spectral zeta functions for non-commutative harmonic oscillators, Kyushu Journal of Mathematics, Vol. 60 (2006) No. 2 p. 383-404 (see Table 2).
|
|
FORMULA
|
Jtilde3(n) = J3(n) - J3(0)*Jtilde2(n) (normalization).
4n^2*J3(n) - (8n^2-8n+3)*J3(n-1) + 4(n-1)^2*J3(n-2) = 2^n*(n-1)!/(2n-1)!! with J3(0)=7*zeta(3) and J3(1)=21*zeta(3)/4 + 1/2.
|
|
MATHEMATICA
|
Numerator[Table[-2*Sum[(-1)^k*Binomial[-1/2, k]^2*Binomial[n, k]*Sum[ 1/(Binomial[-1/2, j]^2*(2*j + 1)^3), {j, 0, k - 1}], {k, 0, n}], {n, 0, 50}]] (* G. C. Greubel, Oct 24 2017 *)
|
|
PROG
|
(PARI) a(n) = numerator(-2*sum(k=0, n, (-1)^k*binomial(-1/2, k)^2*binomial(n, k)*sum(j=0, k-1, 1/(binomial(-1/2, j)^2*(2*j+1)^3))));
|
|
CROSSREFS
|
Cf. A002117 (zeta(3)), A260832 (Jtilde2), A264542 (denominators).
The Apéry-like numbers [or Apéry-like sequences, Apery-like numbers, Apery-like sequences] include A000172, A000984, A002893, A002895, A005258, A005259, A005260, A006077, A036917, A063007, A081085, A093388, A125143 (apart from signs), A143003, A143007, A143413, A143414, A143415, A143583, A183204, A214262, A219692, A226535, A227216, A227454, A229111 (apart from signs), A260667, A260832, A262177, A264541, A264542, A279619, A290575, A290576. (The term "Apery-like" is not well-defined.)
Sequence in context: A251150 A176370 A093265 * A323316 A120801 A308697
Adjacent sequences: A264538 A264539 A264540 * A264542 A264543 A264544
|
|
KEYWORD
|
nonn,frac
|
|
AUTHOR
|
Michel Marcus, Nov 17 2015
|
|
STATUS
|
approved
|
|
|
|