login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A081085 Expansion of 1 / AGM(1, 1 - 8*x) in powers of x. 57
1, 4, 20, 112, 676, 4304, 28496, 194240, 1353508, 9593104, 68906320, 500281280, 3664176400, 27033720640, 200683238720, 1497639994112, 11227634469668, 84509490017680, 638344820152784, 4836914483890112, 36753795855173776, 279985580271435584, 2137790149251471680 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
AGM(x, y) is the arithmetic-geometric mean of Gauss and Legendre.
This is the Taylor expansion of a special point on a curve described by Beauville. - Matthijs Coster, Apr 28 2004
This is the exponential (also known as binomial) convolution of sequence A000984 (central binomial) with itself. See the V. Jovovic e.g.f. and a(n) formulas given below. - Wolfdieter Lang, Jan 13 2012
This is one of the Apery-like sequences - see Cross-references. - Hugo Pfoertner, Aug 06 2017
The recursion (n+1)^2 * a(n+1) = (12*n^2+12*n+4) * a(n) - 32*n^2*a(n-1) with n=0 has zero coefficient for a(-1) and thus a(-1) is not determined uniquely by it, but defining a(-1) = 2^(-5/2) makes a(n) = a(-1-n) * 32^(n-1/2) true for all n in Z. - Michael Somos, Apr 05 2022
REFERENCES
Matthijs Coster, Over 6 families van krommen [On 6 families of curves], Master's Thesis (unpublished), Aug 26 1983.
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..1110 (terms 0..200 from Vincenzo Librandi)
B. Adamczewski, J. P. Bell, and E. Delaygue, Algebraic independence of G-functions and congruences "a la Lucas", arXiv preprint arXiv:1603.04187 [math.NT], 2016.
Arnaud Beauville, Les familles stables de courbes sur P_1 admettant quatre fibres singulières, Comptes Rendus, Académie Sciences Paris, no. 294, May 24 1982, page 657.
Shaun Cooper, Apéry-like sequences defined by four-term recurrence relations, arXiv:2302.00757 [math.NT], 2023.
E. Delaygue, Arithmetic properties of Apery-like numbers, arXiv preprint arXiv:1310.4131 [math.NT], 2013-2015.
Ofir Gorodetsky, New representations for all sporadic Apéry-like sequences, with applications to congruences, arXiv:2102.11839 [math.NT], 2021. See E p. 2.
S. Herfurtner, Elliptic surfaces with four singular fibres, Mathematische Annalen, 1991. Preprint.
Xiao-Juan Ji and Zhi-Hong Sun, Congruences for Catalan-Larcombe-French numbers, arXiv:1505.00668 [math.NT], 2015.
Bradley Klee, Checking Weierstrass data, 2023.
Amita Malik and Armin Straub, Divisibility properties of sporadic Apéry-like numbers, Research in Number Theory, 2016, 2:5.
Stéphane Ouvry and Alexios Polychronakos, Lattice walk area combinatorics, some remarkable trigonometric sums and Apéry-like numbers, arXiv:2006.06445 [math-ph], 2020.
Zhi-Hong Sun, New congruences involving Apéry-like numbers, arXiv:2004.07172 [math.NT], 2020.
D. Zagier, Integral solutions of Apery-like recurrence equations. See line E in sporadic solutions table of page 5.
FORMULA
G.f.: 1 / AGM(1, 1 - 8*x).
E.g.f.: exp(4*x)*BesselI(0, 2*x)^2. - Vladeta Jovovic, Aug 20 2003
a(n) = Sum_{k=0..n} binomial(n, k)*binomial(2*n-2*k, n-k)*binomial(2*k, k) = binomial(2*n, n)*hypergeom([ -n, -n, 1/2], [1, -n+1/2], -1). - Vladeta Jovovic, Sep 16 2003
D-finite with recurrence (n+1)^2 * a(n+1) = (12*n^2+12*n+4) * a(n) - 32*n^2*a(n-1). - Matthijs Coster, Apr 28 2004
E.g.f.: [Sum_{n>=0} binomial(2n,n)*x^n/n! ]^2. - Paul D. Hanna, Sep 04 2009
G.f.: Gaussian Hypergeometric function 2F1(1/2, 1/2; 1; 16*x-64*x^2). - Mark van Hoeij, Oct 24 2011
a(n) = 2^(-n) * A053175(n).
a(n) ~ 2^(3*n+1)/(Pi*n). - Vaclav Kotesovec, Oct 13 2012
0 = x*(x+4)*(x+8)*y'' + (3*x^2 + 24*x + 32)*y' + (x+4)*y, where y(x) = A(x/-32). - Gheorghe Coserea, Aug 26 2016
a(n) = Sum_{k=0..floor(n/2)} 4^(n - 2*k)*binomial(n, 2*k)*binomial(2*k, k)^2. - Seiichi Manyama, Apr 02 2017
a(n) = (1/Pi)^2*Integral_{0 <= x, y <= Pi} (4*cos(x)^2 + 4*cos(y)^2)^n dx dy. - Peter Bala, Feb 10 2022
a(n) = a(-1-n)*32^(n-1/2) and 0 = +a(n)*(+a(n+1)*(+32768*a(n+2) -23552*a(n+3) +3072*a(n+4)) +a(n+2)*(-8192*a(n+2) +8448*a(n+3) -1248*a(n+4)) +a(n+3)*(-512*a(n+3) +96*a(n+4))) +a(n+1)*(+a(n+1)*(-5120*a(n+2) +3840*a(n+3) -512*a(n+4)) +a(n+2)*(+1536*a(n+2) -1728*a(n+3) +264*a(n+4)) +a(n+3)*(+120*a(n+3) -23*a(n+4))) +a(n+2)*(+a(n+2)*(-32*a(n+2) +48*a(n+3) -8*a(n+4)) +a(n+3)*(-5*a(n+3) +a(n+4))) for all n in Z. - Michael Somos, Apr 04 2022
a(n) = binomial(2*n, n)*hypergeom([1/2, -n, -n], [1, 1/2 - n], -1). - Peter Luschny, Apr 05 2022
From Bradley Klee, Jun 05 2023: (Start)
The g.f. T(x) obeys a period-annihilating ODE:
0=4*(-1 + 8*x)*T(x) + (1 - 24*x + 96*x^2)*T'(x) + x*(-1 + 4*x)*(-1 + 8*x)*T''(x).
The periods ODE can be derived from the following Weierstrass data:
g2 = 3*(1 - 16*(1 - 8*x)^2 + 16*(1 - 8*x)^4);
g3 = 1 + 30*(1 - 8*x)^2 - 96*(1 - 8*x)^4 + 64*(1 - 8*x)^6;
which determine an elliptic surface with four singular fibers. (End)
EXAMPLE
G.f. = A(x) = 1 + 4*x + 20*x^2 + 112*x^3 + 676*x^4 + 4304*x^5 + 28496*x^6 + ...
MATHEMATICA
Table[Sum[Binomial[n, k]*Binomial[2*n-2*k, n-k]*Binomial[2*k, k], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Oct 13 2012 *)
a[ n_] := SeriesCoefficient[ Hypergeometric2F1[ 1/2, 1/2, 1, 16 x (1 - 4 x)], {x, 0, n}]; (* Michael Somos, Oct 25 2014 *)
a[ n_] := If[ n < 0, 0, SeriesCoefficient[ 1 / NestWhile[ {(#[[1]] + #[[2]])/2, Sqrt[#[[1]] #[[2]]]} &, {1, Series[ 1 - 8 x, {x, 0, n}]}, #[[1]] =!= #[[2]] &] // First, {x, 0, n}]]; (* Michael Somos, Oct 27 2014 *)
CoefficientList[Series[2*EllipticK[1/(1 - 1/(4*x))^2] / (Pi*(1 - 4*x)), {x, 0, 20}], x] (* Vaclav Kotesovec, Jan 13 2019 *)
a[n_] := Binomial[2 n, n] HypergeometricPFQ[{1/2, -n, -n}, {1, 1/2 - n}, -1];
Table[a[n], {n, 0, 20}] (* Peter Luschny, Apr 05 2022 *)
PROG
(PARI) {a(n) = if( n<0, 0, polcoeff( 1 / agm( 1, 1 - 8 * x + x * O(x^n)), n))};
(PARI) {a(n) = if( n<0, 0, 4^n * sum( k=0, n\2, binomial( n, 2*k) * binomial( 2*k, k)^2 / 16^k))};
(PARI) {a(n)=n!*polcoeff(sum(k=0, n, (2*k)!*x^k/(k!)^3 +x*O(x^n))^2, n)} /* Paul D. Hanna, Sep 04 2009 */
(Python)
from math import comb
def A081085(n): return sum((1<<(n-(m:=k<<1)<<1))*comb(n, m)*comb(m, k)**2 for k in range((n>>1)+1)) # Chai Wah Wu, Jul 09 2023
CROSSREFS
The Apéry-like numbers [or Apéry-like sequences, Apery-like numbers, Apery-like sequences] include A000172, A000984, A002893, A002895, A005258, A005259, A005260, A006077, A036917, A063007, A081085, A093388, A125143 (apart from signs), A143003, A143007, A143413, A143414, A143415, A143583, A183204, A214262, A219692,A226535, A227216, A227454, A229111 (apart from signs), A260667, A260832, A262177, A264541, A264542, A279619, A290575, A290576. (The term "Apery-like" is not well-defined.)
For primes that do not divide the terms of the sequences A000172, A005258, A002893, A081085, A006077, A093388, A125143, A229111, A002895, A290575, A290576, A005259 see A260793, A291275-A291284 and A133370 respectively.
Sequence in context: A227726 A080609 A003645 * A212326 A192624 A209200
KEYWORD
nonn,easy
AUTHOR
Michael Somos, Mar 04 2003
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 28 05:39 EDT 2024. Contains 371235 sequences. (Running on oeis4.)