login
A053175
Catalan-Larcombe-French sequence.
9
1, 8, 80, 896, 10816, 137728, 1823744, 24862720, 346498048, 4911669248, 70560071680, 1024576061440, 15008466534400, 221460239482880, 3287994183188480, 49074667327062016, 735814252604162048
OFFSET
0,2
COMMENTS
These numbers were proposed as 'Catalan' numbers by an associate of Catalan. They appear as coefficients in the series expansion of an elliptic integral of the first kind. Defining f(x; c) = 1 /(1 - c^2*sin^2(x))^(1/2), consider the function I(c) obtained by integrating f(x; c) with respect to x between 0 and Pi/2. I(c) is transformed and written as a power series in c (through an intermediate variable) which acts as a generating function for the sequence.
Conjecture: Let P(n) be the (n+1) X (n+1) Hankel-type determinant with (i,j)-entry equal to a(i+j) for all i,j = 0,...,n. Then P(n)/2^(n*(n+3)) is a positive odd integer. - Zhi-Wei Sun, Aug 14 2013
REFERENCES
P. J. Larcombe, D. R. French and E. J. Fennessey, The asymptotic behavior of the Catalan-Larcombe-French sequence {1, 8, 80, 896, 10816, ...}, Utilitas Mathematica, 60 (2001), 67-77.
P. J. Larcombe, D. R. French and C. A. Woodham, A note on the asymptotic behavior of a prime factor decomposition of the general Catalan-Larcombe-French number, Congressus Numerantium, 156 (2002), 17-25.
LINKS
E. Catalan, Sur les Nombres de Segner, Rend. Circ. Mat. Pal., 1 (1887), 190-201. [From Peter Luschny, Jun 26 2009]
Lane Clark, An asymptotic expansion for the Catalan-Larcombe-French sequence, Journal of Integer Sequences, Vol. 7 (2004), Article 04.2.1.
A. F. Jarvis, P. J. Larcombe and D. R. French, Linear recurrences between two recent integer sequences, Congressus Numerantium, 169 (2004), 79-99.
A. F. Jarvis, P. J. Larcombe and D. R. French, Applications of the a.g.m. of Gauss: some new properties of the Catalan-Larcombe-French sequence, Congressus Numerantium, 161 (2003), 151-162.
A. F. Jarvis, P. J. Larcombe and D. R. French, Power series identities generated by two recent integer sequences, Bulletin ICA, 43 (2005), 85-95.
A. F. Jarvis, P. J. Larcombe and D. R. French, On Small Prime Divisibility of the Catalan-Larcombe-French sequence, Indian Journal of Mathematics, 47 (2005), 159-181.
A. F. Jarvis, P. J. Larcombe and D. R. French, A short proof of the 2-adic valuation of the Catalan-Larcombe-French number, Indian Journal of Mathematics, 48 (2006), 135-138.
F. Jarvis, H. A. Verrill, Supercongruences for the Catalan-Larcombe-French numbers, Ramanujan J (22) (2010) 171.
Xiao-Juan Ji, Zhi-Hong Sun, Congruences for Catalan-Larcombe-French numbers, arXiv:1505.00668 [math.NT], 2015 and JIS vol 19 (2016) # 16.3.4
P. J. Larcombe, A new asymptotic relation between two recent integer sequences, Congressus Numerantium, 175 (2005), 111-116.
Peter J. Larcombe, Daniel R. French, On the “Other” Catalan Numbers: A Historical Formulation Re-Examined, Congressus Numerantium, 143 (2000), 33-64.
P. J. Larcombe and D. R. French, On the integrality of the Catalan-Larcombe-French sequence {1, 8, 80, 896, 10816, ...}, Congressus Numerantium, 148 (2001), 65-91.
P. J. Larcombe and D. R. French, A new generating function for the Catalan-Larcombe-French sequence: proof of a result by Jovovic, Congressus Numerantium, 166 (2004), 161-172.
Brian Yi Sun, Baoyindureng Wu, Two-log-convexity of the Catalan-Larcombe-French sequence, arXiv:1602.04909 [math.CO], 2016. Also Journal of Inequalities and Applications, 2015, 2015:404; DOI: 10.1186/s13660-015-0920-0.
Zhi-Hong Sun, Congruences for Apéry-like numbers, arXiv:1803.10051 [math.NT], 2018.
N. M. Temme, Examples of 3_F_2-polynomials, Asymptotic Methods for Integrals, Chapter 13, pp. 167-179 (2014).
Yang Wen, On the Log-Concavity of the Root of the Catalan-Larcombe-French Numbers, American Journal of Mathematical and Computer Modelling, 2017; 2(4): 95-98.
E. X. W. Xia and O. X. M. Yao, A Criterion for the Log-Convexity of Combinatorial Sequences, The Electronic Journal of Combinatorics, 20 (2013), #P3.
FORMULA
G.f.: 1 / AGM(1, 1 - 16*x) = 2 * EllipticK(8*x / (1-8*x)) / ((1-8*x)*Pi), where AGM(x, y) is the arithmetic-geometric mean of Gauss and Legendre. Cf. A081085, A089602. - Michael Somos, Mar 04 2003 and Vladeta Jovovic, Dec 30 2003
E.g.f.: exp(8*x)*BesselI(0, 4*x)^2. - Vladeta Jovovic, Aug 20 2003
a(n)*n^2 = a(n-1)*8*(3*n^2 - 3*n + 1) - a(n-2)*128*(n-1)^2. - Michael Somos, Apr 01 2003
Exponential convolution of A059304 with itself: Sum(2^n*binomial(2*n, n)*x^n/n!, n=0..infinity)^2 = (BesselI(0, 4*x)*exp(4*x))^2 = hypergeom([1/2], [1], 8*x)^2. - Vladeta Jovovic, Sep 09 2003
a(n) ~ 2^(4n+1)/(Pi*n). - Vaclav Kotesovec, Oct 09 2012
a(n) = 2^n*Sum_{k=0..n} C(n,k)*C(2*k,k)*C(2(n-k),n-k), where C(n,k)=n!/(k!*(n-k)!). This formula has been proved via the Zeilberger algorithm (both sides of the equality satisfy the same recurrence relation). a(n)/2^n also has another expression: Sum_{k=0..floor(n/2)} C(n,2*k)*C(2*k,k)^2*4^(n-2*k). - Zhi-Wei Sun, Mar 21 2013
a(n) = (-1)^n*Sum_{k=0..n}C(2*k,k)*C(2(n-k),n-k)*C(k,n-k)*(-4)^k. I have proved this new formula via the Zeilberger algorithm. - Zhi-Wei Sun, Nov 19 2014
EXAMPLE
G.f. = 1 + 8*x + 80*x^2 + 896*x^3 + 10816*x^4 + 137728*x^5 + 1823774*x^6 + ...
MAPLE
a := proc(n) option remember; if n = 0 then 1 elif n = 1 then 8 else (8*(3*n^2 -3*n+1)*a(n-1)-128*(n-1)^2*a(n-2))/n^2 fi end; # Peter Luschny, Jun 26 2009
MATHEMATICA
a[ n_] := SeriesCoefficient[ EllipticK[ (8 x /(1 - 8 x))^2] / ((1 - 8 x) Pi/2), {x, 0, n}]; (* Michael Somos, Aug 01 2011 *)
a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[ Exp[ 8 x] BesselI[ 0, 4 x]^2, {x, 0, n}]]; (* Michael Somos, Aug 01 2011 *)
Table[(-8)^n Sqrt[Pi] HypergeometricPFQRegularized[{1/2, -n, -n}, {1, 1/2 - n}, -1]/n!, {n, 0, 20}] (* Vladimir Reshetnikov, May 21 2016 *)
PROG
(PARI) {a(n) = if( n<0, 0, polcoeff( 1 / agm( 1, 1 - 16*x + x * O(x^n)), n))}; /* Michael Somos, Feb 12 2003 */
(PARI) {a(n) = if( n<0, 0, polcoeff( sum( k=0, n, binomial( 2*k , k)^2 * (2*x - 16*x^2)^k, x * O(x^n)), n))}; /* Michael Somos, Mar 04 2003 */
CROSSREFS
KEYWORD
nonn,nice
AUTHOR
Peter J Larcombe, Nov 12 2001
STATUS
approved