login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A051580
a(n) = (2*n+6)!!/6!!, related to A000165 (even double factorials).
11
1, 8, 80, 960, 13440, 215040, 3870720, 77414400, 1703116800, 40874803200, 1062744883200, 29756856729600, 892705701888000, 28566582460416000, 971263803654144000, 34965496931549184000, 1328688883398868992000
OFFSET
0,2
COMMENTS
Row m=6 of the array A(3; m,n) := (2*n+m)!!/m!!, m >= 0, n >= 0.
LINKS
A. N. Stokes, Continued fraction solutions of the Riccati equation, Bull. Austral. Math. Soc. Vol. 25 (1982), 207-214.
FORMULA
a(n) = (2*n+6)!!/6!!.
E.g.f.: 1/(1-2*x)^4.
a(n) = n!*2^(n-4)/3, n>=3. - Zerinvary Lajos, Sep 23 2006
G.f.: G(0)/2, where G(k)= 1 + 1/(1 - x/(x + 1/(2*k+8)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 02 2013
From Peter Bala, May 26 2017: (Start)
a(n+1) = (2*n + 8)*a(n) with a(0) = 1.
O.g.f. satisfies the Riccati differential equation 2*x^2*A(x)' = (1 - 8*x)*A(x) - 1 with A(0) = 1.
G.f. as an S-fraction: A(x) = 1/(1 - 8*x/(1 - 2*x/(1 - 10*x/(1 - 4*x/(1 - 12*x/(1 - 6*x/(1 - ... - (2*n + 6)*x/(1 - 2*n*x/(1 - ...))))))))) (by Stokes 1982).
Reciprocal as an S-fraction: 1/A(x) = 1/(1 + 8*x/(1 - 10*x/(1 - 2*x/(1 - 12*x/(1 - 4*x/(1 - 14*x/(1 - 6*x/(1 - ... - (2*n + 8)*x/(1 - 2*n*x/(1 - ...)))))))))). (End)
From Amiram Eldar, Dec 11 2022: (Start)
Sum_{n>=0} 1/a(n) = 48*sqrt(e) - 78.
Sum_{n>=0} (-1)^n/a(n) = 30 - 48/sqrt(e). (End)
MAPLE
seq( mul(2*j+6, j=1..n), n=0..20); # G. C. Greubel, Nov 11 2019
MATHEMATICA
Table[2^n*Pochhammer[4, n], {n, 0, 20}] (* G. C. Greubel, Nov 11 2019 *)
Table[(2n+6)!!/6!!, {n, 0, 20}] (* Harvey P. Dale, Mar 03 2022 *)
PROG
(PARI) vector(20, n, prod(j=1, n-1, 2*j+6) ) \\ G. C. Greubel, Nov 11 2019
(Magma) [1] cat [(&*[2*j+6: j in [1..n]]): n in [1..20]]; // G. C. Greubel, Nov 11 2019
(Sage) [product( (2*j+6) for j in (1..n)) for n in (0..20)] # G. C. Greubel, Nov 11 2019
(GAP) List([0..20], n-> Product([1..n], j-> 2*j+6) ); # G. C. Greubel, Nov 11 2019
CROSSREFS
Cf. A000165, A001147(n+1), A002866(n+1), A051577, A051578, A051579 (rows m=0..5), A051581, A051582, A051583.
Sequence in context: A269796 A328128 A053175 * A228658 A234596 A060375
KEYWORD
easy,nonn
STATUS
approved