login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A051583
a(n) = (2*n+9)!!/9!!, related to A001147 (odd double factorials).
7
1, 11, 143, 2145, 36465, 692835, 14549535, 334639305, 8365982625, 225881530875, 6550564395375, 203067496256625, 6701227376468625, 234542958176401875, 8678089452526869375, 338445488648547905625, 13876265034590464130625
OFFSET
0,2
COMMENTS
Row m=9 of the array A(3; m,n) := (2*n+m)!!/m!!, m >= 0, n >= 0.
LINKS
A. N. Stokes, Continued fraction solutions of the Riccati equation, Bull. Austral. Math. Soc. Vol. 25 (1982), 207-214.
FORMULA
a(n) = (2*n+9)!!/9!!.
E.g.f.: 1/(1-2*x)^(11/2).
From Peter Bala, May 26 2017: (Start)
a(n+1) = (2*n + 11)*a(n) with a(0) = 1.
O.g.f. satisfies the Riccati differential equation 2*x^2*A(x)' = (1 - 11*x)*A(x) - 1 with A(0) = 1.
G.f. as an S-fraction: A(x) = 1/(1 - 11*x/(1 - 2*x/(1 - 13*x/(1 - 4*x/(1 - 15*x/(1 - 6*x/(1 - ... - (2*n + 9)*x/(1 - 2*n*x/(1 - ...))))))))) (by Stokes 1982).
Reciprocal as an S-fraction: 1/A(x) = 1/(1 + 11*x/(1 - 13*x/(1 - 2*x/(1 - 15*x/(1 - 4*x/(1 - 17*x/(1 - 6*x/(1 - ... - (2*n + 11)*x/(1 - 2*n*x/(1 - ...)))))))))). (End)
From Amiram Eldar, Dec 11 2022: (Start)
Sum_{n>=0} 1/a(n) = 945 * sqrt(e*Pi/2) * erf(1/sqrt(2)) - 1332, where erf is the error function.
Sum_{n>=0} (-1)^n/a(n) = 945 * sqrt(Pi/(2*e)) * erfi(1/sqrt(2))) - 684, where erfi is the imaginary error function. (End)
MAPLE
seq(2^n*pochhammer(11/2, n), n = 0..20); # G. C. Greubel, Nov 12 2019
MATHEMATICA
(2*Range[0, 20]+9)!!/945 (* Harvey P. Dale, Apr 10 2019 *)
Table[2^n*Pochhammer[11/2, n], {n, 0, 20}] (* G. C. Greubel, Nov 12 2019 *)
PROG
(PARI) vector(20, n, prod(j=0, n-2, 2*j+11) ) \\ G. C. Greubel, Nov 12 2019
(Magma) [1] cat [(&*[2*j+11: j in [0..n-1]]): n in [1..20]]; // G. C. Greubel, Nov 12 2019
(Sage) [product( (2*j+11) for j in (0..n-1)) for n in (0..20)] # G. C. Greubel, Nov 12 2019
(GAP) List([0..20], n-> Product([0..n-1], j-> 2*j+11) ); # G. C. Greubel, Nov 12 2019
CROSSREFS
Cf. A000165, A001147(n+1), A002866(n+1), A178647.
Cf. A051577, A051578, A051579, A051580, A051581, A051582 (rows m=0..8).
Sequence in context: A029529 A214098 A015687 * A225799 A027771 A098310
KEYWORD
easy,nonn
STATUS
approved