login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A027771
a(n) = (n+1)*binomial(n+1,11).
2
11, 144, 1014, 5096, 20475, 69888, 210392, 572832, 1436058, 3359200, 7407036, 15519504, 31097794, 59907456, 111435000, 200880160, 352023165, 601277040, 1003321410, 1638819000, 2624841765, 4128783360, 6386711760, 9727323840, 14602906500, 21628990656
OFFSET
10,1
COMMENTS
Number of 13-subsequences of [ 1, n ] with just 1 contiguous pair.
1214673*a(n) is the number of permutations of (n+1) symbols that 11-commute with an (n+1)-cycle (see A233440 for definition), where 1214673 = A000757(11). - Luis Manuel Rivera Martínez, Feb 07 2014
LINKS
Luis Manuel Rivera, Integer sequences and k-commuting permutations, arXiv preprint arXiv:1406.3081 [math.CO], 2014-2015.
Index entries for linear recurrences with constant coefficients, signature (13,-78,286,-715,1287,-1716,1716,-1287,715,-286,78,-13,1).
FORMULA
G.f.: (11+x)*x^10/(1-x)^13.
From Amiram Eldar, Jan 30 2022: (Start)
Sum_{n>=10} 1/a(n) = 11*Pi^2/6 - 57138257/3175200.
Sum_{n>=10} (-1)^n/a(n) = 11*Pi^2/12 + 822272*log(2)/315 - 5773608863/3175200. (End)
MATHEMATICA
Table[(n+1)*Binomial[n+1, 11], {n, 10, 35}] (* Amiram Eldar, Jan 30 2022 *)
CROSSREFS
Sequence in context: A015687 A051583 A225799 * A098310 A293610 A061613
KEYWORD
nonn,easy
AUTHOR
Thi Ngoc Dinh (via R. K. Guy)
STATUS
approved