login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A233440
Triangle read by rows: T(n, k) = n*binomial(n, k)*A000757(k), 0 <= k <= n.
13
0, 1, 0, 2, 0, 0, 3, 0, 0, 3, 4, 0, 0, 16, 4, 5, 0, 0, 50, 25, 40, 6, 0, 0, 120, 90, 288, 216, 7, 0, 0, 245, 245, 1176, 1764, 1603, 8, 0, 0, 448, 560, 3584, 8064, 14656, 13000, 9, 0, 0, 756, 1134, 9072, 27216, 74196, 131625, 118872, 10, 0, 0, 1200, 2100, 20160, 75600, 274800, 731250, 1320800, 1202880
OFFSET
0,4
COMMENTS
For n >= 0, 0 <= k <= n, T(n, k) is the number of permutations of n symbols that k-commute with an n-cycle (we say that two permutations f and g k-commute if H(fg, gf) = k, where H(, ) denotes the Hamming distance between permutations).
Row sums give A000142.
LINKS
Luis Manuel Rivera Martínez, Rows n = 0..30 of triangle, flattened
R. Moreno and L. M. Rivera, Blocks in cycles and k-commuting permutations, arXiv:1306.5708 [math.CO], 2013-2014.
Luis Manuel Rivera, Integer sequences and k-commuting permutations, arXiv preprint arXiv:1406.3081 [math.CO], 2014-2015.
FORMULA
T(n,k) = n*C(n,k)*A000757(k), 0 <= k <= n.
Bivariate e.g.f.: G(z, u) = z*exp(z*(1-u))*(u/(1-z*u)+(1-log(1-z*u))*(1-u)).
T(n, 0) = A001477(n), n>=0;
T(n, 1) = A000004(n), n>=1;
T(n, 2) = A000004(n), n>=2;
T(n, 3) = A004320(n-2), n>=3;
T(n, 4) = A027764(n-1), n>=4;
T(n, 5) = A027765(n-1)*A000757(5), n>=5;
T(n, 6) = A027766(n-1)*A000757(6), n>=6;
T(n, 7) = A027767(n-1)*A000757(7), n>=7;
T(n, 8) = A027768(n-1)*A000757(8), n>=8;
T(n, 9) = A027769(n-1)*A000757(9), n>=9;
T(n, 10) = A027770(n-1)*A000757(10), n>=10;
T(n, 11) = A027771(n-1)*A000757(11), n>=11;
T(n, 12) = A027772(n-1)*A000757(12), n>=12;
T(n, 13) = A027773(n-1)*A000757(13), n>=13;
T(n, 14) = A027774(n-1)*A000757(14), n>=14;
T(n, 15) = A027775(n-1)*A000757(15), n>=15;
T(n, 16) = A027776(n-1)*A000757(16), n>=16. - Luis Manuel Rivera Martínez, Feb 08 2014
T(n, 0)+T(n, 3) = n*A050407(n+1), for n>=0. - Luis Manuel Rivera Martínez, Mar 06 2014
EXAMPLE
For n = 4 and k = 4, T(4, 4) = 4 because all the permutations of 4 symbols that 4-commute with permutation (1, 2, 3, 4) are (1, 3), (2, 4), (1, 2)(3, 4) and (1, 4)(2, 3).
MATHEMATICA
T[n_, k_] := n Binomial[n, k] ((-1)^k+Sum[(-1)^j k!/(k-j)/j!, {j, 0, k-1}]);
Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 03 2018 *)
CROSSREFS
Sequence in context: A049597 A210951 A348127 * A280728 A175676 A035377
KEYWORD
nonn,tabl
AUTHOR
STATUS
approved