OFFSET
0,4
COMMENTS
For n >= 0, 0 <= k <= n, T(n, k) is the number of permutations of n symbols that k-commute with an n-cycle (we say that two permutations f and g k-commute if H(fg, gf) = k, where H(, ) denotes the Hamming distance between permutations).
Row sums give A000142.
LINKS
Luis Manuel Rivera Martínez, Rows n = 0..30 of triangle, flattened
R. Moreno and L. M. Rivera, Blocks in cycles and k-commuting permutations, arXiv:1306.5708 [math.CO], 2013-2014.
Luis Manuel Rivera, Integer sequences and k-commuting permutations, arXiv preprint arXiv:1406.3081 [math.CO], 2014-2015.
FORMULA
T(n,k) = n*C(n,k)*A000757(k), 0 <= k <= n.
Bivariate e.g.f.: G(z, u) = z*exp(z*(1-u))*(u/(1-z*u)+(1-log(1-z*u))*(1-u)).
T(n, 0) = A001477(n), n>=0;
T(n, 1) = A000004(n), n>=1;
T(n, 2) = A000004(n), n>=2;
T(n, 3) = A004320(n-2), n>=3;
T(n, 4) = A027764(n-1), n>=4;
T(n, 0)+T(n, 3) = n*A050407(n+1), for n>=0. - Luis Manuel Rivera Martínez, Mar 06 2014
EXAMPLE
For n = 4 and k = 4, T(4, 4) = 4 because all the permutations of 4 symbols that 4-commute with permutation (1, 2, 3, 4) are (1, 3), (2, 4), (1, 2)(3, 4) and (1, 4)(2, 3).
MATHEMATICA
T[n_, k_] := n Binomial[n, k] ((-1)^k+Sum[(-1)^j k!/(k-j)/j!, {j, 0, k-1}]);
Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 03 2018 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Luis Manuel Rivera Martínez, Dec 09 2013
STATUS
approved