OFFSET
4,1
COMMENTS
Number of 7-subsequences of [ 1, n ] with just 1 contiguous pair.
8*a(n) is the number of permutations of (n+1) symbols that 5-commute with an (n+1)-cycle (see A233440 for definition), where 8 = A000757(5). - Luis Manuel Rivera Martínez, Feb 07 2014
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 4..1000
Luis Manuel Rivera, Integer sequences and k-commuting permutations, arXiv preprint arXiv:1406.3081 [math.CO], 2014-2015.
Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
FORMULA
G.f.: (5+x)*x^4/(1-x)^7.
From Amiram Eldar, Jan 30 2022: (Start)
Sum_{n>=4} 1/a(n) = 5*Pi^2/6 - 575/72.
Sum_{n>=4} (-1)^n/a(n) = 5*Pi^2/12 + 160*log(2)/3 - 2945/72. (End)
MAPLE
a:=n->(sum((numbcomp(n, 6)), j=2..n)):seq(a(n), n=6..34); # Zerinvary Lajos, Aug 26 2008
MATHEMATICA
Table[(n+1)Binomial[n+1, 5], {n, 4, 40}] (* or *) LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {5, 36, 147, 448, 1134, 2520, 5082}, 40] (* Harvey P. Dale, Jan 15 2017 *)
PROG
(Magma) [(n+1)*Binomial(n+1, 5): n in [4..40]]; // Vincenzo Librandi, Aug 09 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Thi Ngoc Dinh (via R. K. Guy)
EXTENSIONS
Incorrect formula deleted by R. J. Mathar, Feb 13 2016
STATUS
approved