login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A027765
a(n) = (n+1)*binomial(n+1,5).
2
5, 36, 147, 448, 1134, 2520, 5082, 9504, 16731, 28028, 45045, 69888, 105196, 154224, 220932, 310080, 427329, 579348, 773927, 1020096, 1328250, 1710280, 2179710, 2751840, 3443895, 4275180, 5267241, 6444032, 7832088, 9460704, 11362120, 13571712, 16128189
OFFSET
4,1
COMMENTS
Number of 7-subsequences of [ 1, n ] with just 1 contiguous pair.
8*a(n) is the number of permutations of (n+1) symbols that 5-commute with an (n+1)-cycle (see A233440 for definition), where 8 = A000757(5). - Luis Manuel Rivera Martínez, Feb 07 2014
LINKS
Luis Manuel Rivera, Integer sequences and k-commuting permutations, arXiv preprint arXiv:1406.3081 [math.CO], 2014-2015.
FORMULA
G.f.: (5+x)*x^4/(1-x)^7.
From Amiram Eldar, Jan 30 2022: (Start)
Sum_{n>=4} 1/a(n) = 5*Pi^2/6 - 575/72.
Sum_{n>=4} (-1)^n/a(n) = 5*Pi^2/12 + 160*log(2)/3 - 2945/72. (End)
MAPLE
a:=n->(sum((numbcomp(n, 6)), j=2..n)):seq(a(n), n=6..34); # Zerinvary Lajos, Aug 26 2008
MATHEMATICA
Table[(n+1)Binomial[n+1, 5], {n, 4, 40}] (* or *) LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {5, 36, 147, 448, 1134, 2520, 5082}, 40] (* Harvey P. Dale, Jan 15 2017 *)
PROG
(Magma) [(n+1)*Binomial(n+1, 5): n in [4..40]]; // Vincenzo Librandi, Aug 09 2017
CROSSREFS
Sequence in context: A217166 A275143 A276249 * A196481 A096945 A063417
KEYWORD
nonn,easy
AUTHOR
Thi Ngoc Dinh (via R. K. Guy)
EXTENSIONS
Incorrect formula deleted by R. J. Mathar, Feb 13 2016
STATUS
approved