login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A027764
a(n) = (n+1)*binomial(n+1,4).
2
4, 25, 90, 245, 560, 1134, 2100, 3630, 5940, 9295, 14014, 20475, 29120, 40460, 55080, 73644, 96900, 125685, 160930, 203665, 255024, 316250, 388700, 473850, 573300, 688779, 822150, 975415, 1150720, 1350360, 1576784, 1832600, 2120580, 2443665, 2804970, 3207789
OFFSET
3,1
COMMENTS
Number of 6-subsequences of [ 1, n ] with just 1 contiguous pair.
a(n) is also the number of permutations of n+1 symbols that 4-commute with an (n+1)-cycle (see A233440 for definition). - Luis Manuel Rivera Martínez, Feb 07 2014
LINKS
Luis Manuel Rivera, Integer sequences and k-commuting permutations, arXiv preprint arXiv:1406.3081 [math.CO], 2014-2015.
FORMULA
G.f.: (4+x)*x^3/(1-x)^6.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6). - Harvey P. Dale, Jun 14 2013
a(n) = 10*C(n+2,2)*C(n+2,5)/(n+2)^2. - Gary Detlefs, Aug 20 2013
Sum_{n>=3} 1/a(n) = 62/9 - (2/3)*Pi^2. - Jaume Oliver Lafont, Jul 15 2017
Sum_{n>=3} (-1)^(n+1)/a(n) = Pi^2/3 + 80*log(2)/3 - 194/9. - Amiram Eldar, Jan 28 2022
MATHEMATICA
Table[(n + 1)Binomial[n + 1, 4], {n, 3, 40}] (* or *) LinearRecurrence[ {6, -15, 20, -15, 6, -1}, {4, 25, 90, 245, 560, 1134}, 40] (* Harvey P. Dale, Jun 14 2013 *)
CoefficientList[Series[(4 + x)/(1 - x)^6, {x, 0, 30}], x] (* Vincenzo Librandi, Feb 08 2014 *)
PROG
(Magma) [(n+1)*Binomial(n+1, 4): n in [3..35]]; // Vincenzo Librandi, Feb 08 2014
CROSSREFS
Cf. A233440.
Sequence in context: A266126 A303514 A041991 * A095669 A323967 A195509
KEYWORD
nonn,easy
AUTHOR
Thi Ngoc Dinh (via R. K. Guy)
STATUS
approved