Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #63 Apr 20 2019 08:08:13
%S 0,1,0,2,0,0,3,0,0,3,4,0,0,16,4,5,0,0,50,25,40,6,0,0,120,90,288,216,7,
%T 0,0,245,245,1176,1764,1603,8,0,0,448,560,3584,8064,14656,13000,9,0,0,
%U 756,1134,9072,27216,74196,131625,118872,10,0,0,1200,2100,20160,75600,274800,731250,1320800,1202880
%N Triangle read by rows: T(n, k) = n*binomial(n, k)*A000757(k), 0 <= k <= n.
%C For n >= 0, 0 <= k <= n, T(n, k) is the number of permutations of n symbols that k-commute with an n-cycle (we say that two permutations f and g k-commute if H(fg, gf) = k, where H(, ) denotes the Hamming distance between permutations).
%C Row sums give A000142.
%H Luis Manuel Rivera Martínez, <a href="/A233440/b233440.txt">Rows n = 0..30 of triangle, flattened</a>
%H R. Moreno and L. M. Rivera, <a href="http://arxiv.org/abs/1306.5708">Blocks in cycles and k-commuting permutations</a>, arXiv:1306.5708 [math.CO], 2013-2014.
%H Luis Manuel Rivera, <a href="http://arxiv.org/abs/1406.3081">Integer sequences and k-commuting permutations</a>, arXiv preprint arXiv:1406.3081 [math.CO], 2014-2015.
%F T(n,k) = n*C(n,k)*A000757(k), 0 <= k <= n.
%F Bivariate e.g.f.: G(z, u) = z*exp(z*(1-u))*(u/(1-z*u)+(1-log(1-z*u))*(1-u)).
%F T(n, 0) = A001477(n), n>=0;
%F T(n, 1) = A000004(n), n>=1;
%F T(n, 2) = A000004(n), n>=2;
%F T(n, 3) = A004320(n-2), n>=3;
%F T(n, 4) = A027764(n-1), n>=4;
%F T(n, 5) = A027765(n-1)*A000757(5), n>=5;
%F T(n, 6) = A027766(n-1)*A000757(6), n>=6;
%F T(n, 7) = A027767(n-1)*A000757(7), n>=7;
%F T(n, 8) = A027768(n-1)*A000757(8), n>=8;
%F T(n, 9) = A027769(n-1)*A000757(9), n>=9;
%F T(n, 10) = A027770(n-1)*A000757(10), n>=10;
%F T(n, 11) = A027771(n-1)*A000757(11), n>=11;
%F T(n, 12) = A027772(n-1)*A000757(12), n>=12;
%F T(n, 13) = A027773(n-1)*A000757(13), n>=13;
%F T(n, 14) = A027774(n-1)*A000757(14), n>=14;
%F T(n, 15) = A027775(n-1)*A000757(15), n>=15;
%F T(n, 16) = A027776(n-1)*A000757(16), n>=16. - _Luis Manuel Rivera Martínez_, Feb 08 2014
%F T(n, 0)+T(n, 3) = n*A050407(n+1), for n>=0. - _Luis Manuel Rivera Martínez_, Mar 06 2014
%e For n = 4 and k = 4, T(4, 4) = 4 because all the permutations of 4 symbols that 4-commute with permutation (1, 2, 3, 4) are (1, 3), (2, 4), (1, 2)(3, 4) and (1, 4)(2, 3).
%t T[n_, k_] := n Binomial[n, k] ((-1)^k+Sum[(-1)^j k!/(k-j)/j!, {j, 0, k-1}]);
%t Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Nov 03 2018 *)
%Y Cf. A007318, A000757.
%K nonn,tabl
%O 0,4
%A _Luis Manuel Rivera Martínez_, Dec 09 2013