login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A233439
a(n) = |{0 < k < n: prime(k)^2 + 4*prime(n-k)^2 is prime}|
3
0, 0, 0, 1, 2, 1, 2, 1, 3, 4, 4, 8, 4, 6, 3, 1, 7, 3, 8, 5, 2, 9, 2, 11, 8, 7, 5, 4, 8, 7, 8, 8, 8, 7, 5, 9, 5, 10, 9, 7, 13, 9, 11, 10, 14, 5, 11, 10, 10, 11, 12, 7, 13, 10, 10, 8, 15, 11, 12, 11, 13, 14, 6, 12, 11, 22, 21, 5, 15, 7, 13, 15, 17, 15, 10, 16, 11, 13, 14, 12, 17, 12, 16, 16, 19, 22, 17, 12, 19, 17, 19, 17, 16, 17, 18, 20, 19, 17, 10, 16
OFFSET
1,5
COMMENTS
Conjecture: (i) a(n) > 0 for all n > 3.
(ii) For any integer n > 10, prime(j)^3 + 2*prime(n-j)^2 is prime for some 0 < j < n, and prime(k)^3 + 2*prime(n-k)^3 is prime for some 0 < k < n.
(iii) If n > 5, then prime(k)^3 + 2*p(n-k)^3 is prime for some 0 < k < n, where p(.) is the partition function (A000041). If n > 2, then prime(k)^3 + 2*q(n-k)^3 is prime for some 0 < k < n, where q(.) is the strict partition function (A000009).
LINKS
Z.-W. Sun, On a^n+ bn modulo m, arXiv preprint arXiv:1312.1166 [math.NT], 2013-2014.
Z.-W. Sun, Problems on combinatorial properties of primes, arXiv:1402.6641 [math.NT], 2014-2016.
EXAMPLE
a(4) = 1 since prime(3)^2 + 4*prime(1)^2 = 5^2 + 4*2^2 = 41 is prime.
a(6) = 1 since prime(5)^2 + 4*prime(1)^2 = 11^2 + 4*2^2 = 137 is prime.
a(8) = 1 since prime(3)^2 + 4*prime(5)^2 = 5^2 + 4*11^2 = 509 is prime.
a(16) = 1 since prime(6)^2 + 4*prime(10)^2 = 13^2 + 4*29^2 = 3533 is prime.
MATHEMATICA
a[n_]:=Sum[If[PrimeQ[Prime[k]^2+4*Prime[n-k]^2], 1, 0], {k, 1, n-1}]
Table[a[n], {n, 1, 100}]
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Dec 09 2013
STATUS
approved