login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A232465
a(n) = |{0 < k <= n/2: prime(k) + prime(n-k) - 1 is prime}|
7
0, 1, 0, 1, 1, 0, 2, 1, 3, 1, 3, 1, 3, 1, 3, 4, 5, 2, 5, 2, 5, 5, 4, 5, 4, 5, 6, 8, 2, 8, 9, 11, 4, 6, 1, 3, 6, 8, 8, 7, 3, 11, 9, 8, 8, 9, 12, 8, 10, 10, 10, 8, 6, 3, 8, 11, 13, 14, 13, 15, 8, 15, 15, 14, 8, 18, 11, 14, 5, 10, 7, 10, 15, 12, 10, 5, 10, 11, 12, 16, 21, 15, 16, 14, 8, 15, 19, 14, 16, 18, 13, 10, 28, 21, 14, 20, 18, 24, 20, 19
OFFSET
1,7
COMMENTS
Conjecture: (i) a(n) > 0 except for n = 1, 3, 6. Also, a(n) = 1 only for n = 2, 4, 5, 8, 10, 12, 14, 35.
(ii) For each integer n > 7, there is a positive integer k < n/2 with (prime(n-k) - prime(k))/2 prime. Also, for any positive integer n not among 1, 3, 5, 9, 21, (prime(k) + prime(n-k))/2 is prime for some 0 < k < n.
(iii) For any integer n > 6, prime(k)^2 + prime(n-k)^2 - 1 is prime for some 0 < k < n. Also, for any integer n > 4 not equal to 14, (prime(k)^2 + prime(n-k)^2)/2 is prime for some 0 < k < n.
(iv) For any integer n > 3, (prime(k) - 1)^2 + prime(n-k)^2 is prime for some 0 < k < n. Also, if n > 4 then (prime(k) + 1)^2 + prime(n-k)^2 is prime for some 0 < k < n.
LINKS
EXAMPLE
a(8) = 1 since prime(4) + prime(4) - 1 = 13 is prime.
a(10) = 1 since prime(4) + prime(6) - 1 = 7 + 13 - 1 = 19 is prime.
a(14) = 1 since prime(6) + prime(8) - 1 = 13 + 19 - 1 = 31 is prime.
a(35) = 1 since prime(2) + prime(33) - 1 = 3 + 137 - 1 = 139 is prime.
MATHEMATICA
a[n_]:=Sum[If[PrimeQ[Prime[k]+Prime[n-k]-1], 1, 0], {k, 1, n/2}]
Table[a[n], {n, 1, 100}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Nov 24 2013
STATUS
approved