The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A067513 Number of divisors d of n such that d+1 is prime. 27
1, 2, 1, 3, 1, 3, 1, 3, 1, 3, 1, 5, 1, 2, 1, 4, 1, 4, 1, 4, 1, 3, 1, 5, 1, 2, 1, 4, 1, 5, 1, 4, 1, 2, 1, 7, 1, 2, 1, 5, 1, 4, 1, 4, 1, 3, 1, 6, 1, 3, 1, 4, 1, 4, 1, 4, 1, 3, 1, 8, 1, 2, 1, 4, 1, 5, 1, 3, 1, 4, 1, 8, 1, 2, 1, 3, 1, 4, 1, 6, 1, 3, 1, 7, 1, 2, 1, 5, 1, 6, 1, 4, 1, 2, 1, 7, 1, 2, 1, 5, 1, 4, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
1, 2 and 4 are the only numbers such that for every divisor d, d+1 is a prime.
a(n) = 2 iff Bernoulli number B_{n} has denominator 6 (cf. A051222). - Vladeta Jovovic, Feb 13 2002
These and only these primes appear as prime divisors of any term of InvPhi(n) set if n is not empty, i.e., if n is from A002202. - Labos Elemer, Jun 24 2002
a(n) <= A141197(n). - Reinhard Zumkeller, Oct 06 2008
a(n) is the number of integers k such that n = k - k/p where p is one of the prime divisors of k. (See, e.g., A064097 and A333123, which are related to the mapping k -> k - k/p.) - Robert G. Wilson v, Jun 12 2022
LINKS
Yuchen Ding, On a conjecture of R. M. Murty and V. K. Murty, arXiv:2208.06704 [math.NT], 2022.
Yuchen Ding, On a conjecture of R. M. Murty and V. K. Murty II, arXiv:2209.01087 [math.NT], 2022-2023.
FORMULA
a(n) = A001221(A027760(n)). - Enrique Pérez Herrero, Dec 23 2011
a(n) = Sum_{k = 1..A000005(n)} A010051(A027750(n,k)+1)). - Reinhard Zumkeller, Jul 31 2012
a(n) = A001221(A185633(n)) = A001222(A322312(n)). - Antti Karttunen, Jul 12 2022
EXAMPLE
a(12) = 5 as the divisors of 12 are 1, 2, 3, 4, 6 and 12 and the corresponding primes are 2,3,5,7 and 13. Only 3+1 = 4 is not a prime.
MAPLE
A067513 := proc(n)
local a, d;
a := 0 ;
for d in numtheory[divisors](n) do
if isprime(d+1) then
a := a+1 ;
end if;
end do:
a ;
end proc:
seq(A067513(n), n=1..100) ; # R. J. Mathar, Aug 07 2022
MATHEMATICA
a[n_] := Length[Select[Divisors[n]+1, PrimeQ]]
Table[Count[Divisors[n], _?(PrimeQ[#+1]&)], {n, 110}] (* Harvey P. Dale, Feb 29 2012 *)
PROG
(PARI) a(n)=sumdiv(n, d, isprime(d+1)) \\ Charles R Greathouse IV, Dec 23 2011
(Haskell)
a067513 = sum . map (a010051 . (+ 1)) . a027750_row
-- Reinhard Zumkeller, Jul 31 2012
(Python)
from sympy import divisors, isprime
def a(n): return sum(1 for d in divisors(n, generator=True) if isprime(d+1))
print([a(n) for n in range(1, 104)]) # Michael S. Branicky, Jul 12 2022
CROSSREFS
Even-indexed terms give A046886.
Cf. A005408 (positions of 1's), A051222 (of 2's).
Sequence in context: A079728 A181801 A029244 * A116372 A232465 A029242
KEYWORD
easy,nonn,nice
AUTHOR
Amarnath Murthy, Feb 12 2002
EXTENSIONS
Edited by Dean Hickerson, Feb 12 2002
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 22 21:38 EDT 2024. Contains 372758 sequences. (Running on oeis4.)