OFFSET
1,2
COMMENTS
1, 2 and 4 are the only numbers such that for every divisor d, d+1 is a prime.
a(n) = 2 iff Bernoulli number B_{n} has denominator 6 (cf. A051222). - Vladeta Jovovic, Feb 13 2002
These and only these primes appear as prime divisors of any term of InvPhi(n) set if n is not empty, i.e., if n is from A002202. - Labos Elemer, Jun 24 2002
a(n) <= A141197(n). - Reinhard Zumkeller, Oct 06 2008
a(n) is the number of integers k such that n = k - k/p where p is one of the prime divisors of k. (See, e.g., A064097 and A333123, which are related to the mapping k -> k - k/p.) - Robert G. Wilson v, Jun 12 2022
LINKS
T. D. Noe, Table of n, a(n) for n = 1..10000
Yuchen Ding, On a conjecture of R. M. Murty and V. K. Murty, arXiv:2208.06704 [math.NT], 2022.
Yuchen Ding, On a conjecture of R. M. Murty and V. K. Murty II, arXiv:2209.01087 [math.NT], 2022-2023.
FORMULA
EXAMPLE
a(12) = 5 as the divisors of 12 are 1, 2, 3, 4, 6 and 12 and the corresponding primes are 2,3,5,7 and 13. Only 3+1 = 4 is not a prime.
MAPLE
A067513 := proc(n)
local a, d;
a := 0 ;
for d in numtheory[divisors](n) do
if isprime(d+1) then
a := a+1 ;
end if;
end do:
a ;
end proc:
seq(A067513(n), n=1..100) ; # R. J. Mathar, Aug 07 2022
MATHEMATICA
a[n_] := Length[Select[Divisors[n]+1, PrimeQ]]
Table[Count[Divisors[n], _?(PrimeQ[#+1]&)], {n, 110}] (* Harvey P. Dale, Feb 29 2012 *)
PROG
(PARI) a(n)=sumdiv(n, d, isprime(d+1)) \\ Charles R Greathouse IV, Dec 23 2011
(Haskell)
a067513 = sum . map (a010051 . (+ 1)) . a027750_row
-- Reinhard Zumkeller, Jul 31 2012
(Python)
from sympy import divisors, isprime
def a(n): return sum(1 for d in divisors(n, generator=True) if isprime(d+1))
print([a(n) for n in range(1, 104)]) # Michael S. Branicky, Jul 12 2022
CROSSREFS
KEYWORD
easy,nonn,nice
AUTHOR
Amarnath Murthy, Feb 12 2002
EXTENSIONS
Edited by Dean Hickerson, Feb 12 2002
STATUS
approved