The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A067513 Number of divisors d of n such that d+1 is prime. 27
 1, 2, 1, 3, 1, 3, 1, 3, 1, 3, 1, 5, 1, 2, 1, 4, 1, 4, 1, 4, 1, 3, 1, 5, 1, 2, 1, 4, 1, 5, 1, 4, 1, 2, 1, 7, 1, 2, 1, 5, 1, 4, 1, 4, 1, 3, 1, 6, 1, 3, 1, 4, 1, 4, 1, 4, 1, 3, 1, 8, 1, 2, 1, 4, 1, 5, 1, 3, 1, 4, 1, 8, 1, 2, 1, 3, 1, 4, 1, 6, 1, 3, 1, 7, 1, 2, 1, 5, 1, 6, 1, 4, 1, 2, 1, 7, 1, 2, 1, 5, 1, 4, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS 1, 2 and 4 are the only numbers such that for every divisor d, d+1 is a prime. a(n) = 2 iff Bernoulli number B_{n} has denominator 6 (cf. A051222). - Vladeta Jovovic, Feb 13 2002 These and only these primes appear as prime divisors of any term of InvPhi(n) set if n is not empty, i.e., if n is from A002202. - Labos Elemer, Jun 24 2002 a(n) <= A141197(n). - Reinhard Zumkeller, Oct 06 2008 a(n) is the number of integers k such that n = k - k/p where p is one of the prime divisors of k. (See, e.g., A064097 and A333123, which are related to the mapping k -> k - k/p.) - Robert G. Wilson v, Jun 12 2022 LINKS T. D. Noe, Table of n, a(n) for n = 1..10000 Yuchen Ding, On a conjecture of R. M. Murty and V. K. Murty, arXiv:2208.06704 [math.NT], 2022. Yuchen Ding, On a conjecture of R. M. Murty and V. K. Murty II, arXiv:2209.01087 [math.NT], 2022-2023. FORMULA a(n) = A001221(A027760(n)). - Enrique Pérez Herrero, Dec 23 2011 a(n) = Sum_{k = 1..A000005(n)} A010051(A027750(n,k)+1)). - Reinhard Zumkeller, Jul 31 2012 a(n) = A001221(A185633(n)) = A001222(A322312(n)). - Antti Karttunen, Jul 12 2022 EXAMPLE a(12) = 5 as the divisors of 12 are 1, 2, 3, 4, 6 and 12 and the corresponding primes are 2,3,5,7 and 13. Only 3+1 = 4 is not a prime. MAPLE A067513 := proc(n) local a, d; a := 0 ; for d in numtheory[divisors](n) do if isprime(d+1) then a := a+1 ; end if; end do: a ; end proc: seq(A067513(n), n=1..100) ; # R. J. Mathar, Aug 07 2022 MATHEMATICA a[n_] := Length[Select[Divisors[n]+1, PrimeQ]] Table[Count[Divisors[n], _?(PrimeQ[#+1]&)], {n, 110}] (* Harvey P. Dale, Feb 29 2012 *) PROG (PARI) a(n)=sumdiv(n, d, isprime(d+1)) \\ Charles R Greathouse IV, Dec 23 2011 (Haskell) a067513 = sum . map (a010051 . (+ 1)) . a027750_row -- Reinhard Zumkeller, Jul 31 2012 (Python) from sympy import divisors, isprime def a(n): return sum(1 for d in divisors(n, generator=True) if isprime(d+1)) print([a(n) for n in range(1, 104)]) # Michael S. Branicky, Jul 12 2022 CROSSREFS Even-indexed terms give A046886. Cf. A000005, A001221, A001222, A002202, A027750, A064097, A185633, A202727, A202728, A322312, A322976, A333123, A346467, A355452. Cf. A005408 (positions of 1's), A051222 (of 2's). Sequence in context: A079728 A181801 A029244 * A116372 A232465 A029242 Adjacent sequences: A067510 A067511 A067512 * A067514 A067515 A067516 KEYWORD easy,nonn,nice AUTHOR Amarnath Murthy, Feb 12 2002 EXTENSIONS Edited by Dean Hickerson, Feb 12 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 22 21:38 EDT 2024. Contains 372758 sequences. (Running on oeis4.)