login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A067513
Number of divisors d of n such that d+1 is prime.
27
1, 2, 1, 3, 1, 3, 1, 3, 1, 3, 1, 5, 1, 2, 1, 4, 1, 4, 1, 4, 1, 3, 1, 5, 1, 2, 1, 4, 1, 5, 1, 4, 1, 2, 1, 7, 1, 2, 1, 5, 1, 4, 1, 4, 1, 3, 1, 6, 1, 3, 1, 4, 1, 4, 1, 4, 1, 3, 1, 8, 1, 2, 1, 4, 1, 5, 1, 3, 1, 4, 1, 8, 1, 2, 1, 3, 1, 4, 1, 6, 1, 3, 1, 7, 1, 2, 1, 5, 1, 6, 1, 4, 1, 2, 1, 7, 1, 2, 1, 5, 1, 4, 1
OFFSET
1,2
COMMENTS
1, 2 and 4 are the only numbers such that for every divisor d, d+1 is a prime.
a(n) = 2 iff Bernoulli number B_{n} has denominator 6 (cf. A051222). - Vladeta Jovovic, Feb 13 2002
These and only these primes appear as prime divisors of any term of InvPhi(n) set if n is not empty, i.e., if n is from A002202. - Labos Elemer, Jun 24 2002
a(n) <= A141197(n). - Reinhard Zumkeller, Oct 06 2008
a(n) is the number of integers k such that n = k - k/p where p is one of the prime divisors of k. (See, e.g., A064097 and A333123, which are related to the mapping k -> k - k/p.) - Robert G. Wilson v, Jun 12 2022
LINKS
Yuchen Ding, On a conjecture of R. M. Murty and V. K. Murty, arXiv:2208.06704 [math.NT], 2022.
Yuchen Ding, On a conjecture of R. M. Murty and V. K. Murty II, arXiv:2209.01087 [math.NT], 2022-2023.
FORMULA
a(n) = A001221(A027760(n)). - Enrique Pérez Herrero, Dec 23 2011
a(n) = Sum_{k = 1..A000005(n)} A010051(A027750(n,k)+1). - Reinhard Zumkeller, Jul 31 2012
a(n) = A001221(A185633(n)) = A001222(A322312(n)). - Antti Karttunen, Jul 12 2022
EXAMPLE
a(12) = 5 as the divisors of 12 are 1, 2, 3, 4, 6 and 12 and the corresponding primes are 2,3,5,7 and 13. Only 3+1 = 4 is not a prime.
MAPLE
A067513 := proc(n)
local a, d;
a := 0 ;
for d in numtheory[divisors](n) do
if isprime(d+1) then
a := a+1 ;
end if;
end do:
a ;
end proc:
seq(A067513(n), n=1..100) ; # R. J. Mathar, Aug 07 2022
MATHEMATICA
a[n_] := Length[Select[Divisors[n]+1, PrimeQ]]
Table[Count[Divisors[n], _?(PrimeQ[#+1]&)], {n, 110}] (* Harvey P. Dale, Feb 29 2012 *)
PROG
(PARI) a(n)=sumdiv(n, d, isprime(d+1)) \\ Charles R Greathouse IV, Dec 23 2011
(Haskell)
a067513 = sum . map (a010051 . (+ 1)) . a027750_row
-- Reinhard Zumkeller, Jul 31 2012
(Python)
from sympy import divisors, isprime
def a(n): return sum(1 for d in divisors(n, generator=True) if isprime(d+1))
print([a(n) for n in range(1, 104)]) # Michael S. Branicky, Jul 12 2022
CROSSREFS
Even-indexed terms give A046886.
Cf. A005408 (positions of 1's), A051222 (of 2's).
Sequence in context: A079728 A181801 A029244 * A116372 A232465 A378445
KEYWORD
easy,nonn,nice
AUTHOR
Amarnath Murthy, Feb 12 2002
EXTENSIONS
Edited by Dean Hickerson, Feb 12 2002
STATUS
approved