login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A046886
Number of divisors d of 2n satisfying (d+1) = prime or number of prime factors of the denominator of the even Bernoulli numbers.
7
2, 3, 3, 3, 3, 5, 2, 4, 4, 4, 3, 5, 2, 4, 5, 4, 2, 7, 2, 5, 4, 4, 3, 6, 3, 4, 4, 4, 3, 8, 2, 4, 5, 3, 4, 8, 2, 3, 4, 6, 3, 7, 2, 5, 6, 4, 2, 7, 2, 5, 4, 4, 3, 8, 4, 6, 3, 4, 2, 9, 2, 3, 6, 4, 4, 7, 2, 4, 5, 6, 2, 9, 2, 4, 6, 3, 3, 8, 2, 6, 5, 4, 3, 7, 3, 4, 4, 6, 3, 11, 2, 4, 3, 3, 4, 8, 2, 5, 7, 6, 2, 6, 2, 5
OFFSET
1,1
COMMENTS
From von Staudt-Clausen theorem.
REFERENCES
G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, Th. 118.
Hans Rademacher, Topics in Analytic Number Theory, Springer, 1973, Chap. 1.
LINKS
FORMULA
a(n) = A067513(2n). - R. J. Mathar, Aug 07 2022
MAPLE
A046886 := proc(n)
A067513(2*n) ;
end proc:
seq(A046886(n), n=1..100) ; # R. J. Mathar, Aug 07 2022
MATHEMATICA
Length[ Select[ Divisors[ 2n ], PrimeQ[ #+1 ]& ] ] or Length[ FactorInteger[ Denominator@BernoulliB[ 2k ] ] ]
Table[Count[Divisors[2n], _?(PrimeQ[#+1]&)], {n, 110}] (* or *) PrimeOmega/@ Denominator[BernoulliB[2*Range[110]]] (* Harvey P. Dale, Mar 19 2015 *)
CROSSREFS
Sequence in context: A358468 A173924 A307392 * A257246 A056206 A257245
KEYWORD
nonn
AUTHOR
Wouter Meeussen, Jan 23 2001
STATUS
approved