login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A173924
Expansion of 1/(1 - x^5 - x^6 - x^7 - x^8 + x^13).
23
1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 2, 3, 3, 3, 3, 4, 6, 8, 10, 11, 12, 16, 20, 26, 32, 38, 46, 56, 70, 88, 108, 132, 161, 198, 244, 302, 372, 457, 561, 689, 849, 1046, 1287, 1584, 1947, 2395, 2947, 3627, 4464, 5492, 6756, 8312, 10227, 12584, 15484, 19052, 23440
OFFSET
0,12
COMMENTS
Limiting ratio is: 1.2303914344072246.
Related to the 7th Salem on the Mossinghoff's list by factorization:
(1 + x)*(1 - x + x^2)*(1 - x^3 - x^5 - x^7 + x^10)
LINKS
Michael Mossinghoff, Small Salem Numbers
FORMULA
a(n) = a(n-5) + a(n-6) + a(n-7) + a(n-8) - a(n-13). - Franck Maminirina Ramaharo, Oct 30 2018
MAPLE
seq(coeff(series(1/(1-x^5-x^6-x^7-x^8+x^13), x, n+1), x, n), n = 0..50); # G. C. Greubel, Dec 15 2019
MATHEMATICA
CoefficientList[Series[1/(1-x^5-x^6-x^7-x^8+x^13), {x, 0, 50}], x]
PROG
(PARI) my(x='x+O('x^50)); Vec(1/(1-x^5-x^6-x^7-x^8+x^13)) \\ G. C. Greubel, Nov 03 2018
(Magma) R<x>:=PowerSeriesRing(Integers(), 50); Coefficients(R!(1/(1 -x^5-x^6-x^7-x^8+x^13))); // G. C. Greubel, Nov 03 2018
(Sage)
def A173924_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( 1/(1-x^5-x^6-x^7-x^8+x^13) ).list()
A173924_list(50) # G. C. Greubel, Dec 15 2019
KEYWORD
nonn,easy
AUTHOR
Roger L. Bagula, Nov 26 2010
EXTENSIONS
More terms from Franck Maminirina Ramaharo, Nov 03 2018
STATUS
approved