|
|
A225393
|
|
Expansion of 1/(1 - x - x^2 + x^6 - x^8).
|
|
24
|
|
|
1, 1, 2, 3, 5, 8, 12, 19, 30, 47, 74, 116, 183, 288, 453, 713, 1122, 1766, 2779, 4373, 6882, 10830, 17043, 26820, 42206, 66419, 104522, 164484, 258845, 407339, 641021, 1008761, 1587466, 2498162, 3931305, 6186612, 9735741, 15320931, 24110227, 37941757, 59708145
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
LINKS
|
G. C. Greubel, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (1,1,0,0,0,-1,0,1).
|
|
FORMULA
|
G.f.: 1/(1 - x - x^2 + x^6 - x^8).
a(n) = a(n-1) + a(n-2) - a(n-6) + a(n-8). - Ilya Gutkovskiy, Nov 16 2016
|
|
MATHEMATICA
|
CoefficientList[Series[1/(1 - x - x^2 + x^6 - x^8), {x, 0, 50}], x]
LinearRecurrence[{1, 1, 0, 0, 0, -1, 0, 1}, {1, 1, 2, 3, 5, 8, 12, 19}, 50] (* G. C. Greubel, Nov 16 2016 *)
|
|
PROG
|
(PARI) Vec(1/(1-x-x^2+x^6-x^8) + O(x^50)) \\ G. C. Greubel, Nov 16 2016
(Magma) m:=50; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/(1-x-x^2+x^6-x^8))); // G. C. Greubel, Nov 03 2018
|
|
CROSSREFS
|
Cf. A029826, A117791, A143419, A143438, A143472, A143619, A143644, A147663, A173908, A173911, A173924, A173925, A174522, A175740, A175772, A175773, A175782, A181600, A204631, A225391, A225394, A225482, A225499.
Sequence in context: A024567 A303668 A060961 * A243850 A357519 A179018
Adjacent sequences: A225390 A225391 A225392 * A225394 A225395 A225396
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Roger L. Bagula, May 06 2013
|
|
STATUS
|
approved
|
|
|
|