login
A225396
Expansion of 1/(1 - x - x^2 + x^10 - x^12).
1
1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 88, 142, 229, 369, 595, 959, 1546, 2492, 4017, 6475, 10438, 16826, 27123, 43722, 70479, 113611, 183139, 295217, 475885, 767119, 1236583, 1993351, 3213249, 5179704, 8349597, 13459412, 21696349, 34974155, 56377758, 90880011
OFFSET
0,3
COMMENTS
Limiting ratio is 1.61198..., the largest real root of -1 + x^2 - x^10 - x^11 + x^12 = 0.
LINKS
Roger L. Bagula, Demo file
Index entries for linear recurrences with constant coefficients, signature (1, 1, 0, 0, 0, 0, 0, 0, 0, -1, 0, 1).
FORMULA
a(0)=1, a(1)=1, a(2)=2, a(3)=3, a(4)=5, a(5)=8, a(6)=13, a(7)=21, a(8)=34, a(9)=55, a(10)=88, a(11)=142, a(n)=a(n-1)+a(n-2)- a(n-10)+ a(n-12). - Harvey P. Dale, Apr 12 2014
MATHEMATICA
CoefficientList[Series[1/(1 - x - x^2 + x^10 - x^12), {x, 0, 50}], x]
LinearRecurrence[{1, 1, 0, 0, 0, 0, 0, 0, 0, -1, 0, 1}, {1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 88, 142}, 50] (* Harvey P. Dale, Apr 12 2014 *)
KEYWORD
nonn,easy
AUTHOR
Roger L. Bagula, May 06 2013
STATUS
approved