login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A206139
G.f.: A(x) = Sum_{n>=0} x^(n*(n+1)/2) / Product_{k=1..n} (1-x^k)^(n-k+1).
2
1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 88, 141, 224, 356, 563, 890, 1401, 2202, 3448, 5386, 8386, 13025, 20175, 31180, 48077, 73976, 113588, 174057, 266174, 406224, 618729, 940552, 1427038, 2161122, 3266956, 4930052, 7427314, 11171332, 16776169, 25154204
OFFSET
0,4
LINKS
EXAMPLE
G.f.: A(x) = 1 + x + x^2 + 2*x^3 + 3*x^4 + 5*x^5 + 8*x^6 + 13*x^7 +...
where
A(x) = 1 + x/(1-x) + x^3/((1-x)^2*(1-x^2)) + x^6/((1-x)^3*(1-x^2)^2*(1-x^3)) + x^10/((1-x)^4*(1-x^2)^3*(1-x^3)^2*(1-x^4)) +...
PROG
(PARI) {a(n)=polcoeff(sum(m=0, n, x^(m*(m+1)/2)/prod(k=1, m, (1-x^k +x*O(x^n))^(m-k+1))), n)}
for(n=0, 61, print1(a(n), ", "))
CROSSREFS
Cf. A206119.
Sequence in context: A261606 A261598 A261587 * A374765 A023440 A225396
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 04 2012
STATUS
approved