login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A206138
G.f.: A(x) = Sum_{n>=0} x^(n*(n+1)/2) / Product_{k=1..n} (1-x^k)^k.
5
1, 1, 1, 2, 2, 4, 5, 8, 10, 17, 21, 32, 44, 62, 86, 122, 164, 230, 318, 428, 591, 803, 1088, 1467, 1995, 2665, 3596, 4800, 6430, 8552, 11416, 15093, 20062, 26487, 34988, 46035, 60626, 79490, 104278, 136337, 178189, 232331, 302724, 393493, 511165, 662775, 858380
OFFSET
0,4
EXAMPLE
G.f.: A(x) = 1 + x + x^2 + 2*x^3 + 2*x^4 + 4*x^5 + 5*x^6 + 8*x^7 ...
where
A(x) = 1 + x/(1-x) + x^3/((1-x)*(1-x^2)^2) + x^6/((1-x)*(1-x^2)^2*(1-x^3)^3) + x^10/((1-x)*(1-x^2)^2*(1-x^3)^3*(1-x^4)^4) +...
PROG
(PARI) {a(n)=polcoeff(sum(m=0, n, x^(m*(m+1)/2)/prod(k=1, m, (1-x^k +x*O(x^n))^k)), n)}
for(n=0, 60, print1(a(n), ", "))
CROSSREFS
Cf. A206100.
Sequence in context: A126796 A325831 A240451 * A241545 A157162 A109434
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 04 2012
STATUS
approved