login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A206140
G.f.: Sum_{n>=0} x^n/Product_{k=1..n} (1 - Lucas(k)*x^k + (-1)^k*x^(2*k)).
0
1, 1, 2, 4, 10, 18, 44, 78, 178, 329, 699, 1299, 2724, 5013, 10198, 19076, 37786, 70448, 138322, 256649, 497884, 925309, 1770195, 3283971, 6249417, 11542969, 21785791, 40231877, 75388314, 138806128, 259010824, 475364152, 882643035, 1617443421, 2988026528
OFFSET
0,3
COMMENTS
Compare to the g.f. of partitions: Sum_{n>=0} x^n/Product_{k=1..n} (1-x^k).
As an analog to the identity: (1-x^n) = Product_{k=0..n-1} (1 - u^k*x), where u=exp(2*Pi*I/n), we have (1 - Lucas(n)*x^n + (-1)^n*x^(2*n)) = Product_{k=0..n-1} (1 - u^k*x - (u^k*x)^2).
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 4*x^3 + 10*x^4 + 18*x^5 + 44*x^6 + 78*x^7 +...
where
A(x) = 1 + x/(1-x-x^2) + x^2/((1-x-x^2)*(1-3*x^2+x^4)) + x^3/((1-x-x^2)*(1-3*x^2+x^4)*(1-4*x^3-x^6)) + x^4/((1-x-x^2)*(1-3*x^2+x^4)*(1-4*x^3-x^6)*(1-7*x^4+x^8)) + x^5/((1-x-x^2)*(1-3*x^2+x^4)*(1-4*x^3-x^6)*(1-7*x^4+x^8)*(1-11*x^5-x^10)) +...).
The Lucas numbers begin: A000204 = [1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, 521, ...].
PROG
(PARI) {Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}
{a(n)=polcoeff(sum(m=0, n, x^m/prod(k=1, m, 1-Lucas(k)*x^k+(-1)^k*x^(2*k)+x*O(x^n))), n)}
for(n=0, 51, print1(a(n), ", "))
CROSSREFS
Sequence in context: A303438 A348396 A104723 * A079162 A257593 A197926
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 04 2012
STATUS
approved