login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A303438
Expansion of Product_{k>=1} ((1 + 2^k*x^k)/(1 - 2^k*x^k))^(1/2^k).
4
1, 2, 4, 10, 18, 38, 80, 158, 292, 630, 1260, 2470, 4922, 9706, 19392, 41010, 78466, 155494, 318764, 625670, 1238854, 2567666, 5106208, 10122522, 20022960, 40082154, 80027140, 163330106, 324201942, 643489014, 1306843568, 2592220110, 5081546084
OFFSET
0,2
COMMENTS
a(n) / 2^n tends to 1.2036... - Vaclav Kotesovec, Apr 25 2018
LINKS
FORMULA
G.f.: exp( Sum_{j>=1} ((-1)^j - 1) / (j*(1 - 1/(2^(j-1)*x^j))) ). - Vaclav Kotesovec, Apr 25 2018
MATHEMATICA
nmax = 30; CoefficientList[Series[Product[((1 + 2^k*x^k)/(1 - 2^k*x^k))^(1/2^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Apr 24 2018 *)
nmax = 30; CoefficientList[Series[Exp[Sum[((-1)^j - 1) / (j*(1 - 1/(2^(j - 1)*x^j))), {j, 1, nmax}]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Apr 25 2018 *)
PROG
(PARI) my(N=66, x='x+O('x^N)); Vec(prod(k=1, N, ((1+2^k*x^k)/(1-2^k*x^k))^(1/2^k)))
CROSSREFS
KEYWORD
nonn,changed
AUTHOR
Seiichi Manyama, Apr 24 2018
STATUS
approved