login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A303382
Expansion of Product_{n>=1} ((1 + 8*x^n)/(1 - 8*x^n))^(1/8).
4
1, 2, 4, 50, 98, 1830, 4576, 83950, 236500, 4211766, 12903260, 222377926, 723722602, 12136867530, 41382435824, 678060771778, 2400028798290, 38546050682278, 140724756748476, 2220907298526934, 8323586858891766, 129340015891714962, 495838256186203600
OFFSET
0,2
LINKS
FORMULA
a(n) ~ c * 8^n / n^(7/8), where c = (QPochhammer[-1, 1/8] / QPochhammer[1/8])^(1/8) / Gamma(1/8) = 0.15003359366795844474467456149... - Vaclav Kotesovec, Apr 23 2018
MAPLE
seq(coeff(series(mul(((1+8*x^k)/(1-8*x^k))^(1/8), k = 1..n), x, n+1), x, n), n=0..25); # Muniru A Asiru, Apr 23 2018
MATHEMATICA
nmax = 25; CoefficientList[Series[Product[((1 + 8*x^k)/(1 - 8*x^k))^(1/8), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Apr 23 2018 *)
nmax = 30; CoefficientList[Series[(-7*QPochhammer[-8, x] / (9*QPochhammer[8, x]))^(1/8), {x, 0, nmax}], x] (* Vaclav Kotesovec, Apr 23 2018 *)
PROG
(PARI) N=66; x='x+O('x^N); Vec(prod(k=1, N, ((1+8*x^k)/(1-8*x^k))^(1/8)))
CROSSREFS
Expansion of Product_{n>=1} ((1 + 2^b*x^n)/(1 - 2^b*x^n))^(1/(2^b)): A015128 (b=0), A303346 (b=1), A303360 (b=2), this sequence (b=3).
Cf. A303381.
Sequence in context: A032019 A181179 A175814 * A303443 A277034 A156498
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Apr 22 2018
STATUS
approved