login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A303384
Total area of all rectangles with dimensions s and t where s | t, n = s + t and s <= t.
2
0, 1, 2, 7, 4, 22, 6, 35, 26, 50, 10, 126, 12, 86, 100, 155, 16, 247, 18, 294, 172, 182, 22, 590, 124, 242, 260, 518, 28, 860, 30, 651, 364, 386, 380, 1365, 36, 470, 484, 1390, 40, 1532, 42, 1134, 1144, 662, 46, 2542, 342, 1395, 772, 1526, 52, 2380, 788
OFFSET
1,3
FORMULA
a(n) = Sum_{i=1..floor(n/2)} i * (n-i) * (floor((n-i)/i) - floor((n-i-1)/i)).
a(n) = Sum_{d|n} d*(n-d). - Daniel Suteu, Jun 19 2018
a(n) = n*sigma(n) - sigma_2(n). - Ridouane Oudra, Apr 15 2021
From Amiram Eldar, Dec 11 2023: (Start)
a(n) = A064987(n) - A001157(n).
Sum_{k=1..n} a(k) ~ c * n^3 / 3, where c = zeta(2) - zeta(3) = 0.442877... . (End)
MAPLE
with(numtheory): seq(n*sigma(n) - sigma[2](n), n=1..60); # Ridouane Oudra, Apr 15 2021
MATHEMATICA
Table[Sum[i (n - i) (Floor[(n - i)/i] - Floor[(n - i - 1)/i]), {i, Floor[n/2]}], {n, 80}]
a[n_] := n * DivisorSigma[1, n] - DivisorSigma[2, n]; Array[a, 100] (* Amiram Eldar, Dec 11 2023 *)
PROG
(Magma) [0] cat [&+[k*(n-k)*((n-k) div k)-(n-k-1) div k: k in [1..n div 2]]: n in [2..80]]; // Vincenzo Librandi, Jun 07 2018
(PARI) a(n) = sum(i=1, n\2, i*(n-i)*((n-i)\i - (n-i-1)\i)); \\ Michel Marcus, Jun 07 2018
(PARI) a(n) = sumdiv(n, d, d*(n-d)); \\ Daniel Suteu, Jun 19 2018
(PARI) a(n) = {my(f = factor(n)); n * sigma(f) - sigma(f, 2); } \\ Amiram Eldar, Dec 11 2023
(GAP) List([1..60], n->Sum([1..Int(n/2)], i->i*(n-i)*(Int((n-i)/i)-Int((n-i-1)/i)))); # Muniru A Asiru, Jun 07 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wesley Ivan Hurt, Apr 22 2018
STATUS
approved