login
A303386
Number of aperiodic factorizations of n > 1.
52
1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 4, 1, 2, 2, 3, 1, 4, 1, 4, 2, 2, 1, 7, 1, 2, 2, 4, 1, 5, 1, 6, 2, 2, 2, 7, 1, 2, 2, 7, 1, 5, 1, 4, 4, 2, 1, 12, 1, 4, 2, 4, 1, 7, 2, 7, 2, 2, 1, 11, 1, 2, 4, 7, 2, 5, 1, 4, 2, 5, 1, 16, 1, 2, 4, 4, 2, 5, 1, 12, 3, 2, 1, 11, 2, 2, 2, 7, 1, 11, 2, 4, 2, 2, 2, 19, 1, 4, 4, 7, 1, 5, 1, 7, 5
OFFSET
2,5
COMMENTS
An aperiodic factorization of n is a finite multiset of positive integers greater than 1 whose product is n and whose multiplicities are relatively prime.
LINKS
FORMULA
a(n) = Sum_{d|A052409(n)} mu(d) * A001055(n^(1/d)), where mu = A008683.
EXAMPLE
The a(36) = 7 aperiodic factorizations are (2*2*9), (2*3*6), (2*18), (3*3*4), (3*12), (4*9), and (36). Missing from this list are (2*2*3*3) and (6*6).
MATHEMATICA
facs[n_]:=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[facs[n/d], Min@@#>=d&]], {d, Rest[Divisors[n]]}]];
Table[Length[Select[facs[n], GCD@@Length/@Split[#]===1&]], {n, 2, 100}]
PROG
(PARI)
A001055(n, m=n) = if(1==n, 1, my(s=0); fordiv(n, d, if((d>1)&&(d<=m), s += A001055(n/d, d))); (s));
A052409(n) = { my(k=ispower(n)); if(k, k, n>1); }; \\ From A052409
A303386(n) = if(1==n, n, my(r); sumdiv(A052409(n), d, ispower(n, d, &r); moebius(d)*A001055(r))); \\ Antti Karttunen, Sep 25 2018
KEYWORD
nonn
AUTHOR
Gus Wiseman, Apr 23 2018
EXTENSIONS
More terms from Antti Karttunen, Sep 25 2018
STATUS
approved