login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A303386
Number of aperiodic factorizations of n > 1.
52
1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 4, 1, 2, 2, 3, 1, 4, 1, 4, 2, 2, 1, 7, 1, 2, 2, 4, 1, 5, 1, 6, 2, 2, 2, 7, 1, 2, 2, 7, 1, 5, 1, 4, 4, 2, 1, 12, 1, 4, 2, 4, 1, 7, 2, 7, 2, 2, 1, 11, 1, 2, 4, 7, 2, 5, 1, 4, 2, 5, 1, 16, 1, 2, 4, 4, 2, 5, 1, 12, 3, 2, 1, 11, 2, 2, 2, 7, 1, 11, 2, 4, 2, 2, 2, 19, 1, 4, 4, 7, 1, 5, 1, 7, 5
OFFSET
2,5
COMMENTS
An aperiodic factorization of n is a finite multiset of positive integers greater than 1 whose product is n and whose multiplicities are relatively prime.
LINKS
FORMULA
a(n) = Sum_{d|A052409(n)} mu(d) * A001055(n^(1/d)), where mu = A008683.
EXAMPLE
The a(36) = 7 aperiodic factorizations are (2*2*9), (2*3*6), (2*18), (3*3*4), (3*12), (4*9), and (36). Missing from this list are (2*2*3*3) and (6*6).
MATHEMATICA
facs[n_]:=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[facs[n/d], Min@@#>=d&]], {d, Rest[Divisors[n]]}]];
Table[Length[Select[facs[n], GCD@@Length/@Split[#]===1&]], {n, 2, 100}]
PROG
(PARI)
A001055(n, m=n) = if(1==n, 1, my(s=0); fordiv(n, d, if((d>1)&&(d<=m), s += A001055(n/d, d))); (s));
A052409(n) = { my(k=ispower(n)); if(k, k, n>1); }; \\ From A052409
A303386(n) = if(1==n, n, my(r); sumdiv(A052409(n), d, ispower(n, d, &r); moebius(d)*A001055(r))); \\ Antti Karttunen, Sep 25 2018
KEYWORD
nonn
AUTHOR
Gus Wiseman, Apr 23 2018
EXTENSIONS
More terms from Antti Karttunen, Sep 25 2018
STATUS
approved