login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A052409
a(n) = largest integer power m for which a representation of the form n = k^m exists (for some k).
127
0, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 5, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1
OFFSET
1,4
COMMENTS
Greatest common divisor of all prime-exponents in canonical factorization of n for n>1: a(n)>1 iff n is a perfect power; a(A001597(k))=A025479(k). - Reinhard Zumkeller, Oct 13 2002
a(1) set to 0 since there is no largest finite integer power m for which a representation of the form 1 = 1^m exists (infinite largest m). - Daniel Forgues, Mar 06 2009
A052410(n)^a(n) = n. - Reinhard Zumkeller, Apr 06 2014
Positions of 1's are A007916. Smallest base is given by A052410. - Gus Wiseman, Jun 09 2020
FORMULA
a(1) = 0; for n > 1, a(n) = gcd(A067029(n), a(A028234(n))). - Antti Karttunen, Aug 07 2017
EXAMPLE
n = 72 = 2*2*2*3*3: GCD[exponents] = GCD[3,2] = 1. This is the least n for which a(n) <> A051904(n), the minimum of exponents.
For n = 10800 = 2^4 * 3^3 * 5^2, GCD[4,3,2] = 1, thus a(10800) = 1.
MAPLE
# See link.
#
a:= n-> igcd(map(i-> i[2], ifactors(n)[2])[]):
seq(a(n), n=1..120); # Alois P. Heinz, Oct 20 2019
MATHEMATICA
Table[GCD @@ Last /@ FactorInteger[n], {n, 100}] (* Ray Chandler, Jan 24 2006 *)
PROG
(Haskell)
a052409 1 = 0
a052409 n = foldr1 gcd $ a124010_row n
-- Reinhard Zumkeller, May 26 2012
(PARI) a(n)=my(k=ispower(n)); if(k, k, n>1) \\ Charles R Greathouse IV, Oct 30 2012
(Scheme) (define (A052409 n) (if (= 1 n) 0 (gcd (A067029 n) (A052409 (A028234 n))))) ;; Antti Karttunen, Aug 07 2017
(Python)
from math import gcd
from sympy import factorint
def A052409(n): return gcd(*factorint(n).values()) # Chai Wah Wu, Aug 31 2022
CROSSREFS
Apart from the initial term essentially the same as A253641.
Differs from A051904 for the first time at n=72, where a(72) = 1, while A051904(72) = 2.
Differs from A158378 for the first time at n=10800, where a(10800) = 1, while A158378(10800) = 2.
Sequence in context: A158052 A253641 A158378 * A327503 A051904 A070012
KEYWORD
nonn
EXTENSIONS
More terms from Labos Elemer, Jun 17 2002
STATUS
approved