OFFSET
1,4
COMMENTS
Greatest common divisor of all prime-exponents in canonical factorization of n for n>1: a(n)>1 iff n is a perfect power; a(A001597(k))=A025479(k). - Reinhard Zumkeller, Oct 13 2002
a(1) set to 0 since there is no largest finite integer power m for which a representation of the form 1 = 1^m exists (infinite largest m). - Daniel Forgues, Mar 06 2009
A052410(n)^a(n) = n. - Reinhard Zumkeller, Apr 06 2014
LINKS
Daniel Forgues, Table of n, a(n) for n = 1..100000
Eric Weisstein's World of Mathematics, Power
Eric Weisstein's World of Mathematics, Perfect Power
FORMULA
EXAMPLE
n = 72 = 2*2*2*3*3: GCD[exponents] = GCD[3,2] = 1. This is the least n for which a(n) <> A051904(n), the minimum of exponents.
For n = 10800 = 2^4 * 3^3 * 5^2, GCD[4,3,2] = 1, thus a(10800) = 1.
MAPLE
# See link.
#
a:= n-> igcd(map(i-> i[2], ifactors(n)[2])[]):
seq(a(n), n=1..120); # Alois P. Heinz, Oct 20 2019
MATHEMATICA
Table[GCD @@ Last /@ FactorInteger[n], {n, 100}] (* Ray Chandler, Jan 24 2006 *)
PROG
(Haskell)
a052409 1 = 0
a052409 n = foldr1 gcd $ a124010_row n
-- Reinhard Zumkeller, May 26 2012
(PARI) a(n)=my(k=ispower(n)); if(k, k, n>1) \\ Charles R Greathouse IV, Oct 30 2012
(Scheme) (define (A052409 n) (if (= 1 n) 0 (gcd (A067029 n) (A052409 (A028234 n))))) ;; Antti Karttunen, Aug 07 2017
(Python)
from math import gcd
from sympy import factorint
def A052409(n): return gcd(*factorint(n).values()) # Chai Wah Wu, Aug 31 2022
CROSSREFS
Apart from the initial term essentially the same as A253641.
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from Labos Elemer, Jun 17 2002
STATUS
approved