|
|
A052409
|
|
a(n) = largest integer power m for which a representation of the form n = k^m exists (for some k).
|
|
108
|
|
|
0, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 5, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,4
|
|
COMMENTS
|
Greatest common divisor of all prime-exponents in canonical factorization of n for n>1: a(n)>1 iff n is a perfect power; a(A001597(k))=A025479(k). - Reinhard Zumkeller, Oct 13 2002
a(1) set to 0 since there is no largest finite integer power m for which a representation of the form 1 = 1^m exists (infinite largest m). - Daniel Forgues, Mar 06 2009
A052410(n)^a(n) = n. - Reinhard Zumkeller, Apr 06 2014
Positions of 1's are A007916. Smallest base is given by A052410. - Gus Wiseman, Jun 09 2020
|
|
LINKS
|
Daniel Forgues, Table of n, a(n) for n = 1..100000
N. J. A. Sloane, Maple programs for A007916, A278028, A278029, A052409, A089723, A277564
Eric Weisstein's World of Mathematics, Power
Eric Weisstein's World of Mathematics, Perfect Power
Index entries for sequences computed from exponents in factorization of n
|
|
FORMULA
|
a(1) = 0; for n > 1, a(n) = gcd(A067029(n), a(A028234(n))). - Antti Karttunen, Aug 07 2017
|
|
EXAMPLE
|
n = 72 = 2*2*2*3*3: GCD[exponents] = GCD[3,2] = 1. This is the least n for which a(n) <> A051904(n), the minimum of exponents.
For n = 10800 = 2^4 * 3^3 * 5^2, GCD[4,3,2] = 1, thus a(10800) = 1.
|
|
MAPLE
|
# See link.
#
a:= n-> igcd(map(i-> i[2], ifactors(n)[2])[]):
seq(a(n), n=1..120); # Alois P. Heinz, Oct 20 2019
|
|
MATHEMATICA
|
Table[GCD @@ Last /@ FactorInteger[n], {n, 100}] (* Ray Chandler, Jan 24 2006 *)
|
|
PROG
|
(Haskell)
a052409 1 = 0
a052409 n = foldr1 gcd $ a124010_row n
-- Reinhard Zumkeller, May 26 2012
(PARI) a(n)=my(k=ispower(n)); if(k, k, n>1) \\ Charles R Greathouse IV, Oct 30 2012
(Scheme) (define (A052409 n) (if (= 1 n) 0 (gcd (A067029 n) (A052409 (A028234 n))))) ;; Antti Karttunen, Aug 07 2017
|
|
CROSSREFS
|
Cf. A052410, A005361, A051903, A072411-A072414, A124010, A075802, A072776, A270492.
Apart from the initial term essentially the same as A253641.
Differs from A051904 for the first time at n=72, where a(72) = 1, while A051904(72) = 2.
Differs from A158378 for the first time at n=10800, where a(10800) = 1, while A158378(10800) = 2.
Cf. A000005, A000961, A001597, A052410, A303386, A327501.
Sequence in context: A158052 A253641 A158378 * A327503 A051904 A070012
Adjacent sequences: A052406 A052407 A052408 * A052410 A052411 A052412
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Eric W. Weisstein
|
|
EXTENSIONS
|
More terms from Labos Elemer, Jun 17 2002
|
|
STATUS
|
approved
|
|
|
|